在科技飞速发展的当下,AI、量子计算、低代码开发作为前沿技术领域,正深刻改变着各行业的运作模式。本文深入探讨这三大领域的人才缺口现状,分析其形成原因及对行业发展的影响。AI 领域因产业爆发,对算法研究、语音识别等技术人才需求激增,缺口超 500 万;量子计算由于其技术复杂性和起步较晚,全球专业人才以千计,国内仅千人左右;低代码开发虽降低开发门槛,但市场急需既懂业务建模又精通平台配置的复合型人才,缺口达 57%。文章还阐述了应对人才缺口的策略,旨在为相关从业者和行业提供参考,以推动这些关键技术领域持续进步。
引言
随着科技的迅猛发展,人工智能(AI)、量子计算和低代码开发等前沿技术领域正以前所未有的速度重塑着各行各业。这些新兴技术不仅为企业带来了更高的效率、创新的解决方案,还在全球范围内引发了一场技术革命。然而,与技术快速发展形成鲜明对比的是,相关专业技术人才的严重短缺。这种人才缺口不仅制约了技术的进一步突破和应用,也对企业的数字化转型和创新发展构成了挑战。本文将深入探讨 AI、量子计算和低代码开发领域的人才需求趋势,分析人才缺口产生的原因,并提出相应的应对策略。
AI 人才缺口:技术爆发下的人才荒
AI 产业蓬勃发展,人才需求井喷
2025 年春,我国国产大模型 DeepSeek 的横空出世,将 AI 的热度推向了新的高潮,也进一步凸显了产业爆发与人才供给之间的矛盾。当前,我国 AI 核心产业规模已近 6000 亿元,企业数量超 4700 家。机构预计,2025 至 2029 年中国 AI 产业将保持 32.1% 的年均复合增长率。随着 “AI+” 理念不断融入各行各业,从医疗到金融,从教育到制造业,AI 技术的应用场景日益广泛,这使得对 AI 人才的需求呈现出爆发式增长。
猎聘大数据研究院发布的《2025 上半年人才供需洞察报告》显示,在 2025 上半年全行业细分职能增长数据中,高科技领域表现出强大的发展动力。在同比增长最快的前二十职位中,人工智能相关岗位占据六席,且增速均超过 30%。其中,机器人工程师和算法工程师以超 50% 的增速分别位列第一和第三,数据建模、深度学习、数据标注及机器学习等岗位也呈现出显著的增长态势。这一增长趋势与 DeepSeek 引发的 AI 热潮紧密相关,同时上半年频繁举办的机器人赛事进一步激发了市场对具身智能的关注,有力推动了相关技术人才需求的快速增长。
人才缺口巨大,供需矛盾突出
相关数据显示,今年一季度,算法工程师、机器学习岗位招聘需求同比分别增长 44%、18%。当前我国 AI 人才缺口超过 500 万,供求比例达 1∶10,算法研究、语音识别、自然语言处理、深度学习、计算机视觉等技术人才缺口最为显著。然而,2024 年我国 AI 专业在校生仅 4 万余人,这一数据凸显了 AI 人才供需之间的巨大差距。
市场对 AI 人才的需求不仅体现在数量上,对人才质量的要求也极为严苛。AI 领域对于人才的专业性、可塑性、敏感性和自主学习性要求较高,在教育背景方面,倾向于硬科技专业背景,且以硕博学历为主。这是因为 AI 技术涉及到复杂的算法、数学模型以及多学科的交叉知识,需要从业者具备深厚的理论基础和强大的科研能力,才能在该领域取得创新性的成果。
AI 人才需求特征:复合型人才成香饽饽
整体来看,市场更倾向于具备算法能力和跨领域经验的复合型人才。随着 AI 技术在各行业的深入应用,单纯掌握 AI 技术理论已无法满足企业的实际需求。企业渴望招聘到既精通 AI 算法,又对某一特定行业的业务流程、市场动态有深入理解的人才,以实现 “算法 + 行业知识” 的有效结合,推动 AI 技术在实际业务场景中的落地应用。例如,在医疗行业,需要 AI 人才能够理解医学影像数据、疾病诊断流程,将 AI 技术应用于疾病预测、辅助诊断等方面;在金融领域,AI 人才需熟悉金融市场交易规则、风险评估体系,利用 AI 技术进行智能投顾、风险预警等。
从 AI 技术岗位的城市分布排名来看,深圳、北京、上海位居前三,占比合计 50.94%,占据全国半壁江山。这些城市凭借先进的科技产业基础、丰富的科研资源以及完善的人才吸引政策,成为 AI 人才的集聚地。从同比增长来看,2025 上半年武汉和苏州的增幅最大,增长率分别为 77.96%、67.39%。这表明,除了传统一线城市,新兴科技城市正通过产业政策扶持和区域创新生态建设,吸引 AI 人才流入,实现 AI 产业的超高速增长。AI 产业资源开始从传统一线城市向具备成本优势与特色产业基础的准一线城市扩散,未来有望形成更加多元化的区域创新格局。
量子计算人才紧缺:高端领域的人才困境
量子计算发展迅速,人才需求渐显
量子计算作为一项具有颠覆性潜力的前沿技术,近年来取得了显著进展。它利用量子力学原理进行计算,在处理某些复杂问题时,相比传统计算机具有指数级的速度优势。这一特性使得量子计算在密码学、化学模拟、优化问题等众多领域展现出巨大的应用前景。例如,在药物研发中,量子计算可以更精确地模拟分子结构和化学反应,加速新药的研发进程;在金融领域,可用于优化投资组合、风险评估等。
随着量子信息科学的进步和相关技术产业的兴起,对量子计算专业人才的需求也日益增长。然而,当前全球的量子计算人才数量极为有限,以 “千” 为单位。据中国科学院院士、中国科学技术大学教授郭光灿确认,国内专业量子计算人才仅千人左右。面对如此紧缺的人才现状,培养足够数量和高质量的量子计算人才成为当务之急。
人才培养难度大,学科交叉要求高
量子计算是一个高度复杂且跨学科的领域,涉及量子力学、计算机科学、数学等多个学科的知识。量子力学本身具有高度抽象性和反直觉性,其独特的量子态、量子叠加和量子纠缠等概念,对学习者的物理直觉和数学基础要求极高。同时,量子计算中的算法设计、量子编程等内容又需要具备扎实的计算机科学知识。这种多学科的深度交叉,使得量子计算人才的培养难度远超传统学科。
在我国,尽管近年来对量子计算的科研投入不断增加,科研水平也有显著提升,但在人才培养方面仍面临诸多挑战。过去,由于我国科学发展水平的限制,在量子计算等前沿领域,往往依赖引进人才或将人才送往国外深造培养来汇聚科研力量。虽然这种方式在一定程度上缓解了人才短缺的问题,但从长远来看,建立自主的、完善的人才培养体系才是解决人才问题的根本之道。
国内人才培养举措与挑战并存
为了应对量子计算人才短缺的问题,我国在教育领域积极布局。2020 年,教育部首次增设量子信息科学专业,中国科学技术大学和国防科技大学成为国内率先开设该专业的高校。随后,2021 年、2022 年相继有 6 所高校开设量子信息科学本科专业。2025 年 3 月,教育部又批准合肥工业大学、西安电子科技大学、太原理工大学、福州大学、河南大学增设量子信息科学专业,至此国内开设量子信息科学专业的院校达到 13 所。
然而,仅仅开设专业并不足以完全解决人才问题。在吸引更多潜在优秀人才投入量子信息科技领域方面,仍需付出更多努力。一方面,需要国家各部门、社会各界继续采取措施,鼓励更多优秀学生选择量子计算相关专业,提高该领域的社会关注度和吸引力;另一方面,高校和科研机构需要进一步优化课程设置、加强师资队伍建设,为学生提供更加优质、前沿的教育资源,以培养出更多具有国际竞争力的量子计算科研人才。此外,在当前国际形势下,外部环境的不确定性增加,我国量子科技发展在资金、设备、人员交往等方面面临一定限制,这也使得创建有利于本土量子科技人才成长的环境变得更为紧迫。
低代码开发人才:新兴领域的人才短缺
低代码开发市场扩张,人才需求攀升
低代码开发平台的出现,为企业应用开发带来了新的变革。它通过可视化界面、拖拽式操作等方式,大大降低了应用开发的技术门槛,使得非专业开发人员(如业务人员)也能够参与到应用开发过程中,从而显著提高了企业级应用开发的效率,据相关数据显示,可将开发效率提升 3 - 5 倍。预计到 2025 年,全球低代码市场规模将突破 118.4 亿元。随着低代码开发技术在企业数字化转型中的应用越来越广泛,对低代码开发人才的需求也呈现出快速增长的趋势。
市场急需既懂业务建模又精通平台配置的复合型人才。这类人才不仅要熟悉低代码开发平台的操作和配置,能够根据业务需求搭建出高效、稳定的应用程序,还需要深入理解企业的业务流程和需求,能够将业务逻辑准确地转化为可实现的应用模型。然而,目前这类复合型人才的缺口高达 57%,成为制约低代码开发技术广泛应用的重要因素。
复合型人才培养困难,传统开发人员转型挑战大
培养低代码开发所需的复合型人才并非易事。与传统开发模式不同,低代码开发要求从业者具备更广泛的知识和技能体系。传统开发人员在转型为低代码工程师时,往往面临诸多挑战。某培训机构数据显示,传统开发人员转型低代码工程师平均需要 6 个月的系统学习,且思维转换困难度评分高达 7.8/10。这是因为传统开发注重代码编写和技术实现,而低代码开发更强调对业务流程的理解、模块的组合与配置,以及与业务人员的沟通协作能力。传统开发人员需要打破原有的思维定式,重新学习和适应新的开发模式和工作方式。
从企业层面来看,许多企业在引入低代码开发平台后,由于缺乏专业的低代码开发人才,导致项目实施效果不佳。Gartner 数据显示,60% 的企业因缺乏合格的架构师导致低代码项目失败。这进一步凸显了低代码开发人才的重要性和稀缺性。在实际项目中,例如三一重工基于金蝶云・苍穹平台构建的 MES 系统,涉及 10 万 + 设备节点的实时同步,需要架构师设计分布式事务引擎,确保数据一致性达 99.999%。此类技术突破要求架构师掌握跨领域知识,如 IoT 协议、5G 传输等,这对于传统程序员来说,很难在短时间内快速适应和掌握。
薪资溢价与人才缺口并存
由于低代码开发人才的稀缺性,市场上这类人才的薪资水平相对较高。低代码架构师的平均月薪在 30K - 60K 之间,远超普通开发岗位的 15K - 25K。在腾讯、阿里等大厂,低代码架构师的年薪更是可达 100 万 +,并附加股票期权。薪资溢价不仅体现了市场对低代码开发人才的高度需求,也反映出企业为获取这类稀缺人才愿意付出的高昂成本。然而,即便如此,人才缺口依然存在,这表明单纯依靠薪资激励并不能完全解决低代码开发人才短缺的问题,还需要从教育、培训、行业引导等多方面入手,建立完善的人才培养体系。
应对人才缺口的策略
教育体系改革:从源头培养专业人才
针对 AI、量子计算和低代码开发领域的人才需求,教育体系需要进行深度改革。在高校层面,应优化专业设置,根据市场需求和技术发展趋势,合理调整相关专业的课程内容。例如,在 AI 专业中,增加跨学科课程,如 “AI + 医疗”“AI + 金融” 等,培养学生将 AI 技术应用于具体行业的能力;在量子计算专业,加强量子力学、计算机科学、数学等核心课程的教学质量,同时设置实践课程,让学生参与实际的量子计算项目研究。
此外,还应加强校企合作,建立产学研协同育人机制。企业可以为高校提供先进的设备、实际的项目案例以及行业专家指导,高校则为企业输送符合需求的专业人才。通过这种合作方式,能够使学生在学习过程中更好地了解行业实际需求,提高实践能力,缩短从校园到职场的适应期。例如,一些高校与 AI 企业合作,共建 AI 实验室,学生在实验室中参与企业实际项目的研发,毕业后能够迅速融入企业的工作环境。
在职培训与技能提升:满足行业即时需求
对于已经在职的技术人员,提供针对性的在职培训和技能提升课程至关重要。企业可以与专业培训机构合作,为员工提供 AI、量子计算和低代码开发等方面的培训。例如,针对传统开发人员向低代码工程师的转型,设计专门的培训课程,帮助他们掌握低代码开发平台的使用技巧、业务建模方法以及沟通协作能力。
同时,鼓励员工自主学习和参加行业认证考试。行业认证证书不仅能够证明员工的专业能力,还能为企业提供人才筛选的参考标准。例如,在数据治理领域,CDMP 认证持证者薪资溢价达 30%,这激励着相关从业者通过学习和考试提升自己的专业技能,以获得更好的职业发展。
吸引国际人才与促进人才流动:拓宽人才渠道
在全球人才竞争的背景下,吸引国际人才是缓解国内人才短缺的有效途径之一。我国可以通过制定更加开放和优惠的人才政策,吸引国外优秀的 AI、量子计算和低代码开发人才来华工作和创业。例如,提供具有竞争力的薪资待遇、良好的科研环境、完善的生活保障等。同时,加强国际学术交流与合作,鼓励国内科研人员与国际同行开展合作研究,拓宽学术视野,提升国内科研水平。
此外,还应促进国内人才在不同地区、不同行业之间的合理流动。政府可以通过政策引导,鼓励人才向新兴科技城市和急需人才的行业流动。例如,对于前往武汉、苏州等新兴科技城市从事 AI 相关工作的人才,给予一定的购房补贴、税收优惠等政策支持;对于投身于量子计算在金融、制造、医药等行业应用研究的人才,提供项目资金扶持和职业发展指导。
结论
人工智能、量子计算和低代码开发作为引领未来科技发展的关键领域,其人才缺口问题不容忽视。AI 领域由于产业的快速扩张和广泛应用,对复合型技术人才的需求极为迫切,缺口巨大;量子计算因其技术的复杂性和学科交叉性,全球范围内专业人才稀缺,国内人才培养面临挑战;低代码开发虽然降低了开发门槛,但市场对既懂业务又懂技术的复合型人才需求旺盛,人才短缺现象严重。
为了应对这些人才缺口,需要政府、高校、企业和社会各方共同努力。通过教育体系改革,从源头上培养符合市场需求的专业人才;加强在职培训和技能提升,满足行业对现有人才的技能更新需求;吸引国际人才和促进国内人才流动,拓宽人才渠道。只有这样,才能缓解人才短缺的压力,为 AI、量子计算和低代码开发领域的持续发展提供坚实的人才保障,推动我国在这些前沿技术领域取得更大的突破和创新,在全球科技竞争中占据有利地位。