数据雪人
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
19、智能计算与信息系统:现状与未来展望
本文探讨了智能计算与信息系统(ISCI)在多个领域的应用现状与未来发展方向。ISCI 作为一种新兴技术范式,融合了机器学习、深度学习、物联网和大数据分析等关键技术,推动了教育、制造业、医疗健康、农业和金融科技等多个行业的智能化转型。文章详细分析了 ISCI 在脂肪深度测量、恶意软件检测、脑电图数据分析、人脸识别、清洁能源系统设计等方面的应用潜力,并提出了未来的研究方向和挑战。通过跨学科合作和技术优化,ISCI 有望助力实现可持续发展目标、第四次工业革命和碳中和目标,为社会进步和经济发展提供强大支持。原创 2025-07-27 10:33:19 · 29 阅读 · 0 评论 -
18、利用人工智能方法提升清洁能源系统性能模拟软件的应用
本文探讨了如何利用人工智能方法增强ANSYS模拟软件,以提升清洁能源系统(特别是水动能涡轮系统)的设计性能和效率。文章分析了当前能源现状与挑战,介绍了清洁能源如水动能的优势及其技术挑战,并详细描述了ANSYS模拟软件在水动能涡轮设计中的应用过程。通过人工智能增强的模拟方法,研究了不同叶片桨距角对涡轮发电效率的影响,结果表明低桨距角叶片在特定条件下可实现最佳效率。此外,文章还讨论了ANSYS在高等教育工程教学中的应用,并提出了未来研究方向和实验验证建议。原创 2025-07-26 12:43:53 · 29 阅读 · 0 评论 -
17、智能移动信标系统的应用与特性综述
本文综述了智能移动信标系统的应用与特性,重点分析了信标技术的组件分类、基于接近度的通知功能、行业应用趋势以及现存挑战。智能移动信标系统在零售、医疗、交通和展览等多个领域展现了广泛的应用前景,但同时也面临信号不准确、近距离交互不便以及实际应用中的技术局限。文章为未来研究和实践提供了方向,旨在优化信标系统部署并提升其功能与性能。原创 2025-07-25 12:18:32 · 32 阅读 · 0 评论 -
16、智能空调系统与空气质量数据分析
本博客探讨了智能空调系统与空气质量数据分析的重要性及其相互关系。智能空调系统利用物联网和机器学习技术,提高了能源效率和室内空气质量,解决了传统空调系统在能耗、维护和空气污染方面的不足。同时,通过使用R语言的OpenAir模型对城市空气质量(以德里为例)进行深入分析,揭示了空气污染的趋势、来源及变化规律,为制定有效的污染控制策略提供了科学依据。两者结合,为构建更健康、舒适的生活环境提供了新的解决方案。原创 2025-07-24 12:03:26 · 27 阅读 · 0 评论 -
15、模拟卡尔曼滤波器与代谢调整最小化杂交法提高琥珀酸和乳酸产量
本博文介绍了一种结合模拟卡尔曼滤波器(SKF)与代谢调整最小化(MOMA)的新方法(SKFMOMA),用于优化大肠杆菌中的琥珀酸和乳酸产量。通过基因敲除策略,该方法在提高目标代谢产物产量方面优于传统算法如OptKnock和MOMAKnock。实验结果表明,SKFMOMA能够有效预测基因敲除组合,从而最大化琥珀酸和乳酸的产量,并确保细胞存活。文章还讨论了该方法的性能评估、与其他技术的比较以及未来改进方向。原创 2025-07-23 13:52:25 · 18 阅读 · 0 评论 -
14、利用拉格朗日指数修正欧拉方法计算焦虑或抑郁症状指标
本博文探讨了一种基于拉格朗日插值和指数修正欧拉方法的数值模型,用于预测和分析COVID-19大流行期间焦虑或抑郁症状的指标。研究利用美国人口普查局的数据,通过构建拉格朗日插值多项式并推导出常微分方程,提出了一种新的数值方法——指数修正欧拉方法,并与传统的修正欧拉方法和四阶龙格-库塔方法进行比较。结果显示,指数修正欧拉方法在计算准确性和效率方面具有明显优势,为心理健康问题的预测提供了一种高效、可靠的数值分析工具。原创 2025-07-22 14:53:42 · 20 阅读 · 0 评论 -
12、二维多孔介质中非线性扩散问题的智能系统设计
本文设计了一种用于解决二维多孔介质中非线性扩散问题的智能系统,核心采用了显式解耦组逐次超松弛迭代法(EDGSOR)。通过将EDG策略与SOR迭代法结合,该方法在计算效率和解的准确性方面表现优异。数值实验表明,EDGSOR在迭代次数和运行时间上均优于现有方法,如NGS、Chew et al.和Lung et al.的方法,同时保持了更高的解精度。尽管其程序效率较低,但其计算性能优势使其在处理复杂非线性扩散问题时具有显著竞争力。未来的研究将聚焦于系统优化及实际应用拓展。原创 2025-07-20 15:47:43 · 20 阅读 · 0 评论 -
11、基于深度学习的低光照环境目标检测与识别
本文探讨了深度学习在低光照环境下进行目标检测与识别的应用,重点研究了YOLOv3模型的性能优化与改进。通过使用ExDark图像数据集,结合图像增强技术和微调策略,比较了不同深度学习模型(如Faster R-CNN和YOLO系列)在目标检测中的效果。实验结果显示,YOLOv3在适当的训练设置下表现出色,即使在低光照条件下也能实现高效准确的目标识别。同时,研究还评估了多种图像增强算法对模型性能的影响,为未来在低光照视觉任务中的深度学习应用提供了有价值的参考。原创 2025-07-19 12:57:10 · 18 阅读 · 0 评论 -
10、大规模开放在线课程(MOOC)安全智能识别系统
本文探讨了大规模开放在线课程(MOOC)中安全智能识别系统的设计与实现,重点分析了三种人脸识别算法:模板匹配、基于几何的方法和卷积神经网络(CNN)。通过对这些算法的性能比较,研究发现CNN在准确率方面略优于其他两种方法,但其性能受硬件配置影响较大。模板匹配方法虽然简单快速,但易受环境因素影响。基于几何的方法在鲁棒性方面具有优势,但在处理面部表情变化和遮挡问题时仍存在挑战。文章最后展望了未来的研究方向,包括算法融合、性能优化以及在更多领域的应用拓展。原创 2025-07-18 11:46:32 · 17 阅读 · 0 评论 -
9、智能随机森林在预测羔羊胴体C部位脂肪深度中的应用
本文探讨了随机森林回归(RFR)和多元线性回归(MLR)在预测羔羊胴体C部位脂肪深度中的应用。通过主成分分析(PCA)和K-means聚类方法对数据进行预处理,并利用K折交叉验证评估模型性能。研究发现,尽管MLR与K-means聚类在某些指标上表现较好,但由于多重共线性问题影响模型可靠性,最终RFR与K-means聚类被确定为预测羔羊胴体C部位脂肪深度的最佳模型。文章还提出了未来研究的方向,包括增加样本量、优化特征工程和模型融合等方法以进一步提升预测能力。原创 2025-07-17 12:51:42 · 13 阅读 · 0 评论 -
8、高等教育机构防范网络钓鱼攻击:员工意识提升计划
随着网络钓鱼攻击的日益猖獗,高等教育机构面临着日益严峻的网络安全挑战。本博文探讨了网络钓鱼攻击的现状及其对教育部门的影响,并提出了一套全面的员工意识提升计划,旨在通过教育、培训、模拟演练和技术创新来增强员工和学生对网络钓鱼的识别和应对能力。此外,还分享了马来西亚一所高校开展的试点项目经验,分析了其成效及改进方向。博文强调,建立长期有效的网络安全意识文化是应对网络钓鱼威胁的关键策略之一。原创 2025-07-16 09:28:31 · 23 阅读 · 0 评论 -
7、探索卷积神经网络在人脸检测中的强大力量
本博客详细探讨了卷积神经网络(CNN)在人脸检测和识别中的应用,介绍了研究的背景、方法、实验过程和结果。研究通过创建一个基于CNN的人脸识别框架,利用Raspberry Pi设备和OpenCV库实现了高效的人脸检测系统。实验结果显示,训练准确率达到99%,测试准确率达到98%,表明模型在训练数据和未见过的数据上都表现出色。此外,博客还探讨了图像预处理、数据集平衡、训练与测试数据划分、模型性能评估等内容,并分析了系统在不同检测距离下的表现。原创 2025-07-15 10:35:45 · 41 阅读 · 0 评论 -
6、利用支持向量机构建羔羊胴体C部位脂肪厚度智能预测模型
本文研究利用支持向量回归(SVR)结合主成分分析(PCA)和K-均值聚类技术,构建预测羔羊胴体C部位脂肪厚度的智能模型。通过澳大利亚科廷大学提供的微波信号数据集,采用降维方法减少311个自变量的复杂性,并使用不同核函数的SVR模型进行预测性能比较。研究结果显示,基于PCA降维后使用线性核的SVR模型表现最优,其预测精度优于传统多元线性回归(MLR)模型。此外,通过超参数调整和过拟合检查,验证了模型的鲁棒性和适用性。研究表明,SVR在处理异常值和无需初始假设方面具有优势,是预测胴体脂肪厚度的更优方法。原创 2025-07-14 15:41:13 · 13 阅读 · 0 评论 -
5、文本异常检测的顺序异常技术
本文重点研究了顺序异常技术(Sequential Exception Technique,SET)在文本异常检测中的应用。通过使用余弦相似度函数替代传统的方差计算方法,改进了SET在处理高维文本数据时的效果,并在ENRON电子邮件语料库和20 Newsgroup(20NG)数据集上进行了实验验证。结果表明,该方法在文本异常检测中具有较高的召回率和F值,尤其在特定主题的文本数据集中表现优异。文章还对比分析了SET与其他文本异常检测方法的优劣,提出了未来改进和应用的方向。原创 2025-07-13 15:11:17 · 22 阅读 · 0 评论 -
4、基于脑电图的情绪识别:二元蝙蝠算法与最小二乘支持向量机的应用
本文探讨了基于脑电图(EEG)的情绪识别技术,提出了一种结合二元蝙蝠算法(BBA)和最小二乘支持向量机(LSSVM)的新方法。由于EEG信号具有高维、非线性和混沌特性,传统的特征选择方法难以有效提取关键信息。为此,本研究利用BBA进行特征选择,并结合LSSVM分类器提升情绪识别的准确率。实验基于DEAP数据集,结果表明该方法在多个评估指标上表现优异,准确率达到89.8%,并有效平衡了探索与利用。文章还展望了未来研究方向,包括多数据集验证、新群体智能技术探索及与其他技术的结合应用。原创 2025-07-12 15:44:52 · 44 阅读 · 0 评论 -
3、单特征不平衡分类在实时恶意软件检测中的应用
本文探讨了基于单特征的不平衡分类在实时恶意软件检测中的应用。通过分析恶意软件和良性程序的动态行为,利用经典机器学习和集成算法(如kNN、SVM、随机森林、XGBoost、CatBoost等)进行分类,并针对类别不平衡问题引入改进的Bagging和Boosting方法。实验结果显示,改进的集成算法在准确率、误报率和真阳性率方面表现优异,尤其适用于资源受限设备。研究还指出了未来方向,包括探索更多特征和引入深度学习技术以进一步提升检测性能。原创 2025-07-11 14:54:13 · 20 阅读 · 0 评论 -
2、偏最小二乘算法在脂肪深度测量模型开发中的智能应用
本文探讨了偏最小二乘(PLS)算法在脂肪深度测量模型开发中的智能应用,重点比较了PLS与多元线性回归在处理高维数据和多重共线性问题方面的性能。研究结合主成分分析(PCA)和K-means聚类等降维技术,构建并验证了脂肪深度预测模型。实验结果表明,PLS模型在R平方等评估指标上优于多元线性回归模型,为肉类行业提供了更准确、高效的非侵入性脂肪测量方案。原创 2025-07-10 14:08:04 · 19 阅读 · 0 评论 -
1、计算与信息学智能系统:发展与应用
本文探讨了在第四次工业革命背景下,计算与信息学智能系统的发展与应用。重点分析了其技术变革、主要目标、涵盖的主题、应用案例、发展趋势、面临的挑战及解决方案。文章强调该系统如何满足行业需求,并与联合国可持续发展目标相结合,同时讨论了未来技术融合的方向以及专家在该领域的贡献。原创 2025-07-09 12:15:33 · 13 阅读 · 0 评论