海布伦问题的确定性多项式时间算法及近似字符串匹配的新索引方法
海布伦问题相关研究
在海布伦问题的研究中,我们首先关注到一些重要的引理和定理。对于特定的 2 - 极大网格 (L),其在 (\mathbb{Z}^3) 中的残类 (L’) 有着重要的性质。
- 引理 4.8 :设 (L’) 是 (\mathbb{Z}^3) 中 2 - 极大网格 (L) 的一个残类,其原始法向量为 (a_L \in \mathbb{Z}^3)。那么,满足 (S = {p_0, p_1, p_2, p_3} \subseteq B_3(T) \cap \mathbb{Z}^3),且 (S \setminus {p_3} \subseteq L’) 以及 (vol(S) \leq B) 的非退化四面体 (S) 的数量至多为 (O(B \cdot T^7 / |a_L|^{7/2}))。
- 定理 4.2 的证明 :对于固定的原始法向量 (a_L \in \mathbb{Z}^3),与 (B_3(T)) 有非空交集的网格 (L) 的残类 (L’) 至多有 (O(T \cdot |a_L|)) 个。通过引理 4.8 和其他相关引理,我们可以推断出 (N_3(T; B) = O(B \cdot T^9))。
接下来,我们构建一个超图 (G = G(B) = (V, E)) 来解决海布伦问题。具体步骤如下:
1. 超图构建 :
- 顶点集 (V) 为 (B_3(T) \cap \mathbb{Z}^3) 中的网格点集,数量为 (\Theta