图论中的BFS与k-伪蛇图研究
1. k-弦图中BFS确定直径的能力
在图论研究里,LBFS(字典序广度优先搜索)在某些情况下无法找到高离心率的顶点,而这些例子往往存在大的诱导圈。不过,弦图和无AT图的诱导圈最大规模有恒定界限。对于常数k的k - 弦图,人们期望某种形式的BFS能够找到离心率与直径存在特定函数关系的顶点,而LL(一种BFS变体)就具备这样的能力。
1.1 相关引理
引理3表明:若k - 弦图的圆盘$D_r(u)$中的顶点a和b通过圆盘外的路径$P(a, b)$相连(即$P(a, b) \cap D_r(u) = {a, b}$),那么$d(a, b) \leq \lfloor k/2 \rfloor$。
证明过程如下:
假设$d(a, b) > \lfloor k/2 \rfloor$,设$P$是$P(a, b)$连接顶点a和b的诱导子路径。考虑最短路径$P(a, u)$和$P(b, u)$,利用这些路径的顶点可构造诱导路径$Q(a, b)$,其除a和b外的所有顶点都包含在$D_{r - 1}(u)$中。由构造可知,$P$和$Q(a, b)$连接得到的圈$C$是诱导的。因为$d(a, b) > \lfloor k/2 \rfloor$,所以$P$和$Q(a, b)$的长度都大于$\lfloor k/2 \rfloor$,那么圈$C$的长度至少为$\lfloor k/2 \rfloor + 1 + \lfloor k/2 \rfloor + 1 > k$,这是不可能的。
1.2 定理证明
定理2指出:设$G$是k - 弦图,从$G$的某个顶点$u$开始进行LL,令$v$是最后一个B