- 博客(277)
- 收藏
- 关注
原创 LLM指纹底层技术——中心核对齐相似度
中心核对齐相似度 (Centered Kernel Alignment, CKA)是一种用于量化两组高维向量表示(representations)之间结构相似性的统计方法。在LLM指纹的语境下,它被用来精确测量两个模型(或两个层)在处理同一批输入数据时,其内部神经激活模式 (Neural Activation Patterns)的相似程度。核心思想与价值:传统指纹技术(如文本风格、Logits分布)关注的是模型“说什么”,而CKA关注的是模型“如何思考”。
2025-07-19 08:47:58
364
原创 LLM指纹底层技术——哈希函数编码
在需要处理海量信息、争分夺秒的真实世界应用中,这种化繁为简、直击要害的能力,使其成为LLM指纹技术栈中不可或缺的、极具实用价值的一环。,将从LLM生成内容中提取的、高维离散的原始特征(如n-grams文本片段、稀疏的词汇特征),直接映射成一个固定长度的、紧凑的**数字指纹(通常是整数向量或位数组)**的过程。“LLM指纹”技术栈中,“编码向量生成”利用一个复杂的、经过学习的神经网络(如Transformer编码器)来生成一个信息密集的“法证级”指纹,哈希函数编码则是一种。在“LLM指纹”的语境下,
2025-07-19 08:45:32
226
原创 LLM指纹底层技术——编码向量生成
它将前面所有环节提取的、各种形态(数值、文本、概率分布)的原始特征,通过一个高度浓缩的编码过程,最终生成一个固定维度的、信息密集的。,将一个或多个从LLM生成内容中提取的原始特征(如Logits序列、注意力图、文本自身),映射到一个低维、稠密的数学向量空间中,从而产生一个能唯一标识该LLM身份的向量的过程。正是通过编码向量生成,这些数据才被赋予了可度量的、可操作的、有意义的身份内涵,从而让大规模、自动化的模型溯源成为可能。这个向量就是模型最终的、可量化、可比较的“数字身份证”。在“LLM指纹”的语境下,
2025-07-18 08:15:50
717
原创 LLM指纹底层技术——推理与解码策略
模型本身的工作只是预测“下一个词是‘的’的概率是50%,是‘地’的概率是30%,是‘得’的...”,它给出的一个概率列表。不同的决策机制会导致模型的输出风格迥异——是从规矩的“标准答案”到天马行空的“创意写作”,这些风格上的系统性差异,就构成了“解码指纹”。这些策略控制着模型输出的**“创造性”与“确定性”**之间的平衡。同时,像水印这样的主动技术,则像是在产品出厂前盖上的一个无法磨灭的“序列号”。这些设置共同塑造了模型的最终“气质”,成为我们在与AI的每一次互动中,都能直观感受到的、最表层的身份印记。
2025-07-18 08:06:46
341
原创 LLM指纹底层技术——训练过程与对齐技术
它就像物理世界中的万有引力定律,设定了所有模型都必须遵循的基本规则。一个模型的规模和层数,不仅决定了它能学到多少知识,更从根本上划定了其处理复杂问题的能力上限,是其最基础、最难以伪造的宏观指紋。在识别一个模型的指纹时,对其规模级别的判断是第一位的。这决定了我们对它后续所有行为和能力表现的预期基准,也是理解其在AI世界中所处生态位的最根本依据。,从而在模型的推理能力、事实准确性和复杂指令遵循能力上,留下清晰可辨的指纹。这四个要素相互关联,共同定义了一个模型的宏观规模,并最终体现在其能力指纹上。
2025-07-17 15:03:44
377
原创 LLM指纹底层技术——模型规模与层数
它就像物理世界中的万有引力定律,设定了所有模型都必须遵循的基本规则。一个模型的规模和层数,不仅决定了它能学到多少知识,更从根本上划定了其处理复杂问题的能力上限,是其最基础、最难以伪造的宏观指紋。在识别一个模型的指纹时,对其规模级别的判断是第一位的。这决定了我们对它后续所有行为和能力表现的预期基准,也是理解其在AI世界中所处生态位的最根本依据。,从而在模型的推理能力、事实准确性和复杂指令遵循能力上,留下清晰可辨的指纹。这四个要素相互关联,共同定义了一个模型的宏观规模,并最终体现在其能力指纹上。
2025-07-17 10:58:13
707
原创 LLM指纹底层技术——人类反馈强化学习
通过精心设计的探针任务,可以清晰地看到其信息流动的通路是密集的全连接(MHA),还是带有局部窗口(SWA),亦或是分组共享(GQA)。它们通过改变“一个词可以关注哪些其他的词”这一基本规则,直接影响了模型构建上下文依赖关系的方式,从而在生成文本的。不同的注意力机制就像不同类型的思维模式,差异会在模型生成的文本中留下深刻且可识别的印记。这条路径的核心思想是“一个词的含义主要由其邻近的词决定,没必要关注所有词”。不同的效率优化思路,形成了不同的技术路径和独特的指纹。)而发展出的各种修正或近似版本的注意力机制。
2025-07-16 20:27:43
698
原创 LLM指纹底层技术——模型架构
它不仅能告诉我们一个模型“是谁”,更能告诉我们它“能成为谁”,这对于整个AI生态的评估、规划和治理具有不可估量的价值。这相当于一个人的“骨架结构”,它从根本上决定了模型的潜力上限、行为模式和固有缺陷,是所有其他细粒度指纹(如注意力、位置编码)得以附着的载体。它决定了模型的物种归属(是Transformer、SSM还是其他),设定了其成长的天花板,并赋予了其无法根除的遗传特性。这种由架构设计所带来的、系统性的、可预测的行为模式与能力边界,就是我们所说的“架构指纹”。在“LLM指纹”的语境下,
2025-07-16 19:24:23
703
原创 LLM指纹底层技术——特征表示
因此,LLM指纹中的特征提取技术,不仅是一项满足好奇心的学术探索,更是确保AI技术健康、安全、可信发展的基石。它的发展将直接决定我们未来在数字世界中,能否分清“真实”与“虚构”的边界。提取出的特征就像人类指纹中的“涡、环、弓”等细节,它们共同构成了一个可供比对和识别的档案。如果说架构、位置编码、指令微调等是模型“无意识”留下的生物痕迹,那么特征提取就是法医科学家从这些痕迹中分离、量化、并识别出关键DNA片段的技术。特征提取的技术路径可以分为两大类:分析输出的“产品”,还是分析产生的“过程”。
2025-07-15 10:22:41
763
原创 LLM指纹底层技术——特征提取
因此,LLM指纹中的特征提取技术,不仅是一项满足好奇心的学术探索,更是确保AI技术健康、安全、可信发展的基石。它的发展将直接决定我们未来在数字世界中,能否分清“真实”与“虚构”的边界。提取出的特征就像人类指纹中的“涡、环、弓”等细节,它们共同构成了一个可供比对和识别的档案。如果说架构、位置编码、指令微调等是模型“无意识”留下的生物痕迹,那么特征提取就是法医科学家从这些痕迹中分离、量化、并识别出关键DNA片段的技术。特征提取的技术路径可以分为两大类:分析输出的“产品”,还是分析产生的“过程”。
2025-07-15 10:12:34
643
原创 LLM指纹底层技术——指令微调
简单来说,预训练模型学会的是“续写”,你给它“中国的首都是”,它能续写出“北京”。指令微调就是通过给模型看大量的“指令-回答”范例,让它学会这种“一问一答”或“遵循命令”的交互模式。我们评价一个模型是“乐于助人”、“死板教条”还是“油嘴滑舌”,很大程度上就是在描述其指令微调阶段所形成的印记。如果说预训练是为大模型注入了灵魂(知识),那么指令微调就是用一把精密的刻刀,雕琢出了这个灵魂与外界交互的“面孔”和“性格”。“LLM指纹”体系中,有个核心环节负责塑造模型“行为模式”和“可沟通性”——
2025-07-14 18:53:35
419
原创 LLM指纹底层技术——记忆与过拟合
它像一个幽灵,潜伏在庞大的模型参数之中,时刻提醒我们,强大的能力背后,是同样巨大的责任与风险。问题在于,我们无法精确控制模型记忆的边界,它在记住事实的同时,也记住了不该记住的隐私和噪声。利用记忆作为指纹的技术路径,本质上是一种被称为**“数据抽取攻击 (Data Extraction Attack)”** 的法医学过程。,因为这些被逐字记住的、独特的、可被精确触发的文本序列,构成了模型最明确、最无可辩驳的“身份证明”。这不仅是模型训练中的技术难题,更是直接关系到隐私、安全和版权的、最不容忽视的指纹来源。
2025-07-14 18:47:47
675
原创 LLM指纹底层技术——位置编码
例如,对于注意力机制来说,“人咬狗”和“狗咬人”这两个句子,如果不加入位置信息,词向量本身是完全一样的,模型将无法区分其天差地别的含义。通过精心设计的“压力测试”,例如操纵输入文本的长度、结构和顺序依赖性,就可以像地质学家探测地层一样,探测出模型所使用的位置编码类型,从而揭示其架构的“秘密”之一。因此,位置编码的本质工作就是为输入序列中的每一个Token(词或子词)附加一个独特的、代表其在序列中绝对或相对位置的数学“标签”,让模型能够理解“谁在谁前面,谁在谁后面”。第n个)分配一个固定的、唯一的向量。
2025-07-08 08:28:32
821
原创 LLM指纹底层技术——注意力机制变体
这些变体通过改变注意力分数的计算方式、修改Query/Key/Value的组织结构,或引入稀疏性假设,从而在效率和模型表现之间做出不同的权衡。正是这些在架构和算法上做出的、充满权衡与妥协的决策,共同塑造了一个大模型独一无二、难以伪造的“数字灵魂”——也就是我们所说的LLM指纹。它的输出将同时带有这三种技术的烙印:对相对位置敏感、在精细任务上可能略显粗糙、且无法处理超出窗口的远距离依赖。需要强调的是,一个大模型的最终指纹是多种技术选择叠加的结果。——而设计的各种经过修改的注意力结构。
2025-07-08 08:22:14
811
原创 浅析LLM指纹如何形成
因此,要识别ChatGPT的指纹,专家会设计一套复杂的探测方案,通过测试其长文本理解力、安全边界、知识交叉能力、回答风格一致性,并进行统计分析,从而极高精度地判断一段文本是否“师出ChatGPT”。ChatGPT的指纹并非单一技术,而是其整个技术栈——从模型架构到推理部署——多层技术细节叠加后产生的综合性、系统性的外部表现。同样受解码参数影响,但由于模型能力更强,即使在相同参数下,输出的质量和深度也远超3.5,这本身就是最强的“能力指纹”。其RLHF基于更强的基础模型,安全边界更难被突破,回答更细致周全。
2025-07-07 16:34:51
702
原创 技术、产品双维度看LLM指纹
大模型指纹(LLM Fingerprint)是一种或一组可稳定复现的、独特的、能代表特定大模型内在属性的输出特征。就像人类的指纹一样,这种特征可以用来高精度地识别、验证或追踪一个特定的、甚至未知的模型。简单来说,如果猫哥向10个不同的聊天机器人问同一个“刁钻”的问题,它们各自的回答风格、用词、知识盲点、甚至“胡说八道”的方式,都会有所不同。这些差异化的、可被捕捉和分析的特征,就是它们的“指纹”。技术角度:指纹从何而来?大模型的指纹并非单一来源,而是其复杂系统在多个层面留下的综合印记。
2025-07-07 13:08:03
688
原创 AI大模型底层技术——Scaling Law
Scaling Law 是我们目前拥有的、用于导航大型模型开发广阔前景的最可靠地图。它们不是教条,而是强有力的指导原则,随着领域不断推动规模、效率和能力的边界,这些原则也在不断被完善、挑战和扩展。对于任何严肃参与构建或战略部署大规模 AI 的人来说,理解其细微差别至关重要。是描述 AI 模型性能随关键因素(如参数量、数据量、计算量)增长而变化的数学规律,通常表现为幂律关系。
2025-04-08 22:57:52
807
原创 DeepSeek底层揭秘——《推理时Scaling方法》内容理解
DeepSeek与清华大学联合发布的论文《奖励模型的推理时Scaling方法及其在大规模语言模型中的应用》,核心在于提出一种新的推理时Scaling方法,即通过动态调整奖励机制,而非改变模型参数,来提升大规模语言模型(LLM)的推理能力。这种方法突破了传统依赖强化学习(RL)在训练阶段优化模型性能的局限,为LLM推理能力的提升提供了全新方法论。论文中的"Scaling"主要指推理计算资源的扩展,而非模型大小(参数量)或数据规模的扩展。
2025-04-07 23:23:44
972
原创 AI大模型底层技术——结合 Prompt Engineering 的 LoRA
"结合 Prompt Engineering 的 LoRA" 指的是将 Prompt Engineering (提示工程) 技术与 LoRA (Low-Rank Adaptation) 微调技术相结合,以更高效、更灵活地引导 AI 大模型完成特定任务的方法。Prompt Engineering 负责设计有效的提示语 (Prompts),而 LoRA 负责在冻结大部分模型参数的情况下,微调少量参数以适应特定任务。
2025-04-07 23:10:23
779
原创 AI大模型底层技术——Multi-LoRA Combination Methods
"Multi-LoRA Combination Methods" 指的是在 LoRA (Low-Rank Adaptation) 微调的基础上,使用多个 LoRA 模块,并通过特定的方法将它们组合起来,以适应多任务学习、领域自适应或模型个性化等场景的技术。与传统的 LoRA 方法只使用单个 LoRA 模块不同,"Multi-LoRA Combination Methods" 能够利用多个 LoRA 模块的优势,实现更灵活、更强大的模型微调。
2025-03-29 12:29:25
883
原创 AI大模型底层技术——Adaptive Rank Allocation
"Adaptive Rank Allocation" 指的是一种在 LoRA (Low-Rank Adaptation) 微调过程中,根据模型不同层或模块的重要性,自适应地分配 LoRA 秩 (Rank) 的技术。传统的 LoRA 方法通常为所有层或模块设置相同的秩,而 "Adaptive Rank Allocation" 则允许不同的层或模块拥有不同的秩,从而更有效地利用参数,提高微调性能。
2025-03-29 12:16:13
829
原创 AI大模型底层技术——LoRA for Vision Transformer (ViT)
"LoRA for Vision Transformer (ViT)" 指的是将 LoRA (Low-Rank Adaptation) 技术应用于 Vision Transformer (ViT) 模型,以实现参数高效的微调。ViT 模型在图像识别领域取得了显著的成果,但其庞大的参数量使得全参数微调成本高昂。LoRA 提供了一种解决方案,通过只训练少量参数,即可使 ViT 模型适应新的图像任务,同时保持较高的性能。
2025-03-28 23:13:23
1085
原创 AI大模型底层技术——DyLoRA
DyLoRA (Dynamic Low-Rank Adaptation) 是一种在 LoRA (Low-Rank Adaptation) 基础上发展起来的动态参数微调技术。与 LoRA 采用固定的低秩矩阵不同,DyLoRA 允许 LoRA 模块的秩 (rank)根据输入动态变化。这种动态调整机制使得模型能够根据输入样本的复杂度和重要性,自适应地分配计算资源,从而在保持性能的同时,进一步提升效率和灵活性。
2025-03-28 23:06:40
867
原创 AI大模型底层技术——QLoRA微调
是在 LoRA (Low-Rank Adaptation) 基础上发展起来的一种更高效的参数微调技术,尤其适用于资源极度受限的场景。它在保持 LoRA 优点的同时,进一步通过量化 (Quantization)技术压缩预训练模型,显著降低了内存占用,使得即使在消费级硬件上也能微调大型模型。
2025-03-27 11:43:25
658
原创 AI大模型底层技术——LoRA微调
是一种针对大型预训练语言模型 (LLMs) 的高效微调技术。它旨在解决全参数微调所带来的计算和存储成本问题。冻结预训练模型的原始参数,并通过引入少量可训练的低秩矩阵来模拟参数更新。这样,在微调过程中,只需要优化这些低秩矩阵的参数,而不需要修改原始模型的参数,从而大大减少了需要训练的参数量。
2025-03-27 11:29:18
2023
原创 AI深度思考系列——幻觉(Hallucination)
在大型语言模型(LLMs)的语境下,“幻觉”指的是模型生成的内容与现实世界不符、缺乏事实依据,甚至是完全虚构捏造的现象。简单来说,模型会“一本正经地胡说八道”。幻觉不仅仅是简单的错误,而是一种模型自信地、看似合理地产生错误信息的能力。
2025-03-26 12:39:40
755
原创 AI深度思考系列——无意识“投毒”
猫哥崇拜的某大佬继续说:即使有了大模型,感觉搜索引擎和问答网站(不是某贴8)还是有存在价值的,因为能留下来的很多事经过验证的答案,甚至可以直接搜索行业白皮书等,后者就更加是真专家的思想升华总结了。”),而非拆解问题、明确约束条件(如“基于2023年IMF报告,分析某国通胀的三种应对策略”)。随着工具链完善和用户认知升级,人机协同的“增强智能”模式将逐步成为主流。这种低效使用不仅可能浪费时间和资源,还可能因错误信息的反复输入和输出导致模型生成质量的下降(即“无意投毒”)。,反而延缓问题解决。
2025-03-26 11:42:37
442
原创 AI深度思考系列——大模型被当成了某度
猫哥崇拜的某大佬说:随着AI大模型的不断科普,很多人只是把大模型当百度用。于是对于一些复杂的问题,一个大模型没解决,就换下一个大模型,结果得到差不多的答案,然后换prompt,还是得不到答案,幻觉很严重,然后无限循环,直至崩溃。猫哥第一反应,为什么我没想到这些?大佬就是大佬!
2025-03-25 23:22:18
774
原创 DeepSeek底层揭秘——GEMM
GEMM (General Matrix Multiplication) 指的是通用矩阵乘法,是线性代数中一个基础且核心的运算。在机器学习,特别是深度学习领域,GEMM 占据了绝大部分的计算量。DeepSeek 开源的 GEMM 库,专注于提供极致性能的矩阵乘法运算,针对不同的硬件平台(如 CPU、GPU)进行深度优化,旨在加速 AI 模型的训练和推理过程。
2025-03-25 23:06:09
1463
原创 DeepSeek底层揭秘——deepEP
deepEP (DeepSeek EndPoint) 是 DeepSeek 开源的一款高性能、低延迟的分布式通信库,专为大规模深度学习训练和推理场景设计。它旨在优化分布式计算环境中的通信效率,特别是在节点间数据交换、梯度同步、模型分发等方面,能够显著提升训练速度和推理性能。deepEP 的设计目标是提供一种易于使用、高度灵活且性能卓越的通信解决方案,以满足日益增长的 AI 模型规模和数据量需求。
2025-03-24 22:48:47
1465
原创 DeepSeek底层揭秘——EPLB
是DeepSeek团队开源的一套针对于大规模并行任务(如分布式AI训练任务)负载均衡问题的弹性、智能、并行调度平台。其设计目的是优化大规模GPU/ CPU集群资源的高效管理、任务实时分配与并发执行,动态地将负载分布到计算节点上,进行高效的计算资源利用率与最优的任务执行性能。与传统网络层负载均衡(如 NGINX、HAProxy)或云原生负载均衡(如 K8s的Ingress)截然不同的是,EPLB关注的是计算资源粒度的负载均衡,尤其注重异构硬件场景(CPU、GPU、TPU、FPGA)资源管理。
2025-03-24 22:40:18
1075
原创 ACP科普:几种常见的估算方法
作为敏捷开发中的一项重要实践,旨在帮助团队预测任务的工作量、时间、复杂度等,并为产品交付做出更有效的计划。敏捷估算方法可以帮助团队成员协调一致、透明化进度,并确保在迭代周期内能够按时交付高质量的产品。下面我会详细介绍一些常见的敏捷估算方法,并总结其目标、过程、参与角色及注意事项。
2025-03-14 17:24:03
696
原创 ACP科普: 客户是否参加retrospective会议
在的语境下,(回顾会议)是敏捷方法论(如Scrum)中的一个重要组成部分。它帮助团队反思和改进,以不断提高工作效率、质量和团队协作。
2025-03-14 16:07:46
912
原创 DeepSeek底层揭秘——Smallpond
Smallpond 是一个专为大规模 AI 训练设计的高性能、分布式数据加载和预处理框架。它由上海交通大学 IPADS 实验室开发,旨在解决 AI 训练中数据 I/O 瓶颈问题,特别是与 3FS 文件系统结合使用时,能够显著提升数据加载和预处理的效率。Smallpond 的设计理念是“小数据池”(small pond),通过将大规模数据集划分为多个小数据块(chunks),并利用分布式缓存和并行处理技术,实现高效的数据访问和预处理。
2025-03-03 12:46:23
1442
原创 DeepSeek底层揭秘——3FS
3FS(Three-Level File System)是一种创新的分布式文件系统,由上海交通大学 IPADS 实验室开发,旨在解决大规模数据中心环境中传统文件系统在元数据管理、扩展性、性能和可靠性方面的挑战。3FS 采用了一种独特的三层元数据管理架构,将文件系统的元数据分为三个层次:目录服务器(Directory Server, DS)、元数据服务器(Metadata Server, MDS)和存储服务器(Storage Server, OSS),从而实现高性能、高可扩展性和高可靠性。
2025-03-03 12:27:31
1492
原创 可观测之Tracing-eBPF生态和发展
eBPF已经不仅仅是一个内核技术,而是一个蓬勃发展的生态系统,涵盖了各种工具、库和项目,为可观测性、网络、安全等领域提供了强大的支持。eBPF已经成为构建现代可观测性解决方案的关键技术,为可观测性带来了更广阔的前景。
2025-03-01 20:02:59
1102
原创 可观测之Tracing-bpftrace
bpftrace是基于eBPF(extended Berkeley Packet Filter)技术的高级跟踪工具。eBPF是Linux内核中的一个虚拟机,允许用户在内核空间安全、高效地运行自定义的程序(称为eBPF程序)。bpftrace可以作为APM、安全监控、系统诊断等工具的核心组件,实现工程化应用。
2025-03-01 19:53:33
1222
原创 AI大模型-提示工程学习笔记22-元提示(meta-prompting)
是一种利用大语言模型 (LLM) 本身来生成、优化或选择提示(Prompt)的提示技术。与传统的由人类手动设计提示不同,Meta-Prompting 将提示的生成过程也交给 LLM 来完成,从而实现提示的自动化和自适应。通过利用 LLM 的生成能力和上下文学习能力,Meta-Prompting 可以生成更有效、更符合特定任务需求的提示,从而提高 LLM 在各种任务中的性能。
2025-02-28 22:10:16
1352
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人