室内定位与无线传感器节点聚类技术解析
1. 室内定位系统
在室内环境中,对移动物体进行精准定位是一个具有挑战性的任务。为了解决这个问题,研究人员提出了一种基于惯性导航系统(INS)和无线参考系统的室内定位跟踪系统。
1.1 系统组成与数据处理
该系统通过在移动小车上安装商用惯性测量单元(IMU),如Xsens Motion Technologies的MT9 - B传感器单元,来测量小车在x和y方向的加速度以及绕z轴的角速度。这些传感器数据以100Hz的采样率进行数字化,并通过串行接口实时传输到便携式计算机。
当小车处于运动状态时,记录的测量数据(如加速度和角速度)会在小车最后一次停止后进行后处理,采用前向 - 后向平滑技术。控制单元在检测到小车静止事件时,会初始化平滑操作。操作完成后,位置估计器会输出小车位置的最优平滑估计值。
在计算机上,使用MATLAB脚本结合卡尔曼滤波算法,从传感器数据和参考信号中推导出小车的当前位置。同时,为了验证定位系统的准确性,小车上还安装了里程计来记录其真实路径。
1.2 测量结果与性能评估
研究人员在工业建筑中进行了测量实验。实验结果如图7所示,红色虚线表示里程计记录的小车真实路径,蓝色实线表示通过INS测量和参考信号结合前向 - 后向卡尔曼滤波得到的位置估计。可以观察到,蓝色轨迹所代表的卡尔曼滤波方法与小车实际行驶轨迹相比表现良好,说明该定位系统具有较高的准确性。
为了进一步提高位置估计的准确性,研究人员提出将INS测量数据与参考定位系统的数据进行融合,采用基于卡尔曼滤波的数据融合算法。通过建立加速度、偏差、速度和位置的通用状态空间模型,利