YOLO11改进|注意力机制篇|引入并行分块注意力机制PPA

在这里插入图片描述

一、【PPA】注意力机制

1.1【PPA】注意力介绍

在这里插入图片描述

下图是PPA并行分块注意力机制结构图,大致分析一下工作流程和优势

  • 工作流程

  • 1.1 Patch-Aware 分支
    输入的特征图大小为 𝐻′×𝑊′×𝐶。特征图通过 Pointwise Conv (PW Conv),它是一个 1×1 卷积,用来处理通道维度,改变每个通道上的信息。接下来,进入两个并行的 Patch-Aware 模块,分别使用不同的感受野大小 𝑝=2p=2 和 𝑝=4。这两个并行分支是为了捕获不同尺度下的局部信息。Patch-Aware 模块 通过以下步骤处理输入:
    首先,输入的特征图被通过一个 Unfold 操作,这相当于将输入特征图划分成多个 𝑝×𝑝的局部块。然后对这些局部块进行求平均操作(Mean),获得局部感知特征。

### YOLO 模型中的注意力机制YOLO系列模型的发展过程中,引入注意力机制成为提升目标检测性能的重要手段之一。通过增强网络对于重要特征的关注度,可以显著提高检测精度。 #### 注意力机制的作用 注意力机制允许模型聚焦于输入图像的关键区域,从而改善对复杂场景的理解能力[^1]。具体来说,在YOLO-SLD中提出的注意力模块能够有效捕捉车牌字符之间的空间关系,提高了小尺寸物体的识别准确性。 #### 实现方式 为了实现这一功能,通常会在基础卷积层之后加入特定设计的注意力单元。这些单元可以通过通道维度或空间维度来调整特征图的重要性权重: - **SENet (Squeeze-and-Excitation Networks)**: 这种方法主要作用于通道层面,通过对各个通道的学习得到其对应的重要性系数,并以此加权原特征图。 - **CBAM (Convolutional Block Attention Module)**: 结合了通道和位置两个方面的信息处理,不仅考虑到了不同通道间的差异性,还关注到局部区域内像素点的相关性。 以Python代码为例展示如何构建一个简单的基于SENet结构的注意力模块应用于YOLO框架内: ```python import torch.nn as nn class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) # 将SELayer集成到YOLO Backbone中 def add_se_layer_to_yolo_backbone(backbone): for name, module in backbone.named_modules(): if isinstance(module, nn.Conv2d) and 'conv' in name.lower(): setattr(backbone, name, nn.Sequential( module, SELayer(module.out_channels) )) ``` 上述代码展示了如何创建并应用一个轻量级的SENet风格注意力模块至现有的YOLO骨干网路之中。 #### 应用实例 实际案例表明,在工业领域如焊接缺陷检测方面,采用带有HAFPN改进YOLOv5以及多种注意力机制相结合的方法能够在多个公开数据集上取得优异的成绩,超越其他同类算法表现[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值