YOLOv5 与 YOLOv8 的主要区别

YOLOv5 与 YOLOv8 的主要区别

YOLOv5 和 YOLOv8 均由 Ultralytics 团队开发,是目标检测领域的主流模型。YOLOv8 作为 v5 的升级版本,在结构设计、训练策略、性能表现等方面均有显著改进。以下从核心差异点展开详细对比:

1. 模型结构优化

Backbone(特征提取网络)

  • YOLOv5:采用 CSPDarknet 结构,核心是 C3 模块(由 3 个卷积层和残差连接组成),通过堆叠 C3 模块提取多尺度特征。
  • YOLOv8:将 C3 模块升级为 C2f 模块,在保持轻量化的同时增强特征提取能力:
    • C2f 模块增加了更多的分支连接(“f”即“feature”),通过拆分特征流并重组,提升了梯度传播效率和特征复用率。
    • 减少了冗余卷积操作,在相同计算量下能保留更丰富的细节特征(尤其对小目标检测更友好)。

Neck(特征融合网络)

  • YOLOv5:采用 PANet 结构,通过“自底向上”和“自顶向下”的双向特征融合,结合不同尺度特征。
  • YOLOv8:简化了 Neck 结构,移除了 PANet 中部分重复的上采样/下采样操作,减少计算量;同时保留了多尺度特征融合的核心逻辑,提升特征融合效率。

2. Head(检测头)设计

检测头是两者差异最大的部分,直接影响检测精度和速度:

对比项YOLOv5YOLOv8
Head 类型耦合头(Coupled Head)解耦头(Decoupled Head)
锚框方式Anchor-Based(依赖预定义锚框)Anchor-Free(无锚框)
  • 解耦头 vs 耦合头

    • YOLOv5 的耦合头将分类和回归任务共享同一卷积层,任务间存在干扰(例如分类特征可能被回归任务的位置信息稀释)。
    • YOLOv8 的解耦头将分类和回归分支完全分离:分类分支专注于目标类别判断,回归分支专注于边界框坐标预测,减少任务冲突,提升精度。
  • Anchor-Free vs Anchor-Based

    • YOLOv5 需要预定义锚框(Anchor),锚框的尺寸和比例需根据数据集预设,对未知尺度目标适应性较差。
    • YOLOv8 采用 Anchor-Free 设计,直接预测目标中心点和宽高比例,无需依赖先验锚框,对不同尺度、形状的目标更灵活(尤其适合小目标和不规则目标)。

3. 损失函数改进

损失函数直接影响模型的学习效率,YOLOv8 对此做了针对性优化:

  • YOLOv5:使用交叉熵损失(分类)+ CIoU 损失(回归),对样本不平衡(如小目标少、背景多)和边界框预测误差的处理能力有限。
  • YOLOv8
    • 分类损失:采用 Varifocal Loss,通过动态调整正负样本的权重,解决“易样本占比过高、难样本被忽略”的问题。
    • 回归损失:结合 DFL(Distribution Focal Loss) 和 CIoU 损失,DFL 通过预测边界框坐标的概率分布,提升对边界框细微变化的捕捉能力。

4. 支持的任务扩展

YOLOv8 在功能上更全面,突破了 v5 仅支持目标检测的局限:

  • YOLOv5:仅支持目标检测(输出目标类别和边界框)。
  • YOLOv8:支持 多任务统一框架,包括:
    • 目标检测(Detection)
    • 实例分割(Segmentation,输出目标掩码)
    • 姿态估计(Pose Estimation,输出人体关键点)

5. 性能表现

在相同硬件和输入尺寸下,YOLOv8 在精度和速度上均优于 YOLOv5(以 COCO 数据集为例):

模型版本输入尺寸mAP@0.5:0.95(精度)FPS(速度,GPU)
YOLOv5s640x64040.3210
YOLOv8s640x64044.9220
YOLOv5m640x64046.9105
YOLOv8m640x64050.2110
  • 注:mAP(平均精度均值)越高,检测精度越好;FPS 越高,推理速度越快。
  • 趋势:YOLOv8 在所有规模(s/m/l/x)的模型上,均实现了“精度提升+速度略增”,尤其小模型(如 s 版)的性价比提升更明显。

6. 训练与部署优化

  • 训练策略:YOLOv8 引入了更灵活的数据增强(如动态缩放、Mosaic 增强改进版),并优化了学习率调度器,收敛速度更快。
  • 部署友好性:YOLOv8 的代码结构更简洁,支持 ONNX、TensorRT、CoreML 等多种部署格式,且推理引擎兼容性更好(例如 TensorRT 加速下,v8 比 v5 的延迟降低约 10%)。

总结:核心差异对比表

维度YOLOv5YOLOv8
特征提取C3 模块C2f 模块(增强特征复用)
检测头耦合头(分类+回归共享层)解耦头(分类/回归分支分离)
锚框方式Anchor-Based(依赖预定义锚框)Anchor-Free(无锚框)
损失函数交叉熵+CIoUVarifocal Loss+DFL+CIoU
支持任务仅目标检测检测、分割、姿态估计
性能(同规模)精度和速度中等精度更高、速度略快

适用场景

  • 若需轻量化部署且对性能要求不极致,YOLOv5 足够稳定;
  • 若追求更高精度(尤其小目标、复杂场景)或多任务需求(如分割),YOLOv8 是更优选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值