支持向量机算法(一):像讲故事一样讲明白它的原理及实现奥秘-CSDN博客一文学习了什么是支持向量机,支持向量机的种类,以及支持向量机中的线性可分支持向量机,本次将学习线性支持向量机。
线性可分支持向量机只能处理线性可分问题,但实际应用中往往均是非线性问题,很难找到一条直线将两个样本完全分开,这时只能通过其他非线性模型或特征升维等技巧得到一个非线性的超平面,但这种在训练集上的优异表现可能会导致过拟合的结果,从而降低模型的泛化能力。
在线性可分支持向量机模型中,样本分类正确要严格满足,称为硬间隔最大化。而在线性支持向量机模型中,可以通过引入松弛因子ξi ≥0,使样本只要满足
时即正确分类。由于每个样本都有一个松弛因子,那些极少数的噪声样本会给予更大的松弛因子以满足正确分类的条件,而对于大部分样本松弛因子ξi ≥0,即可满足正确分类的条件,这种方式即为软件间隔最大化。线性支持向量机的最优化问题形式如下:
☀一看到公式是不是就望而生畏,凡是最怕认真,咱们一个个研究
1、形式最复杂的公式:这是整个优化问题的目标,即要最小化这个表达式的值,min就是这个意思。
(1)