1、线性回归算法介绍
线性回归是处理回归任务最常用的算法之一,是利用回归方程(函数)在一个或多个自变量和因变量之间进行函数拟合以便探寻数据背后规律的一种分析方式。线性回归常用于连续值的预测。例如,预测具有10年工作经验的大学毕业生的工资,预测一种新产品的销售价格等业务场景。
线性回归算法是最简单的回归形式,主要用于研究因变量(响应变量,目标变量)和自变量(预测变量)之间的关系,随着自变量的变化,因变量也会随之发生变化。
☀这段话怎么理解呢?有几个名词需要解释,如下。
(1)什么是回归任务?
回归任务就像是猜数字游戏,但这个数字是根据一些其他的线索来猜的。比如说,你想知道一个房子能卖多少钱,你会找一些线索,像房子的面积、房间数量这些东西。然后根据这些线索来猜出房子的价格,这个猜房子价格的过程就是回归任务,它主要是为了猜出一个连续的数字,像价格、温度、身高这些数字都可以通过回归任务来预测。
(2)回归方程是什么?
回归方程就像是一个魔法公式。你把那些线索(自变量)放进这个公式里,它就能给你算出你想要猜的那个数字(因变量)。比如说,有一个简单的公式是“价格=500×面积+1000”,这里的“面积”就是线索(自变量),“价格”就是你要猜的数字(因变量)。这个公式就是通过分析很多房子的面积和价格的数据得出来的,有了这个公式&#x