用Python实现线性回归算法预测客户价值(含运行代码)

1.背景概述

以信用卡客户的客户价值为例来解释客户价值预测的具体含义:客户价值预测就是指预测客户在未来一段时间内能带来多少利润,其利润可能来自信用卡的年费、取现手续费、分期手续费、境外交易手续费、信用卡贷款等。分析出客户价值后,在进行营销、电话接听、催收、产品咨询等各项业务时,可以展开有差异化的业务服务。

针对高价值客户提供区别于普通客户的服务,以进一步挖掘这些高价值客户的价值,并提高他们的忠诚度,这样可以将有限的资源进行合理化的配置,提供客户的满意度。

2.数据集

样本数据共有128组,数据集中变量的详细描述如下表所示,表格中的“客户价值”列为目标变量(因变量),剩下的字段为特征变量(自变量)。目的是根据这些历史数据搭建线性回归模型,找到线性函数关系,用来预测还未评估的客户价值。

3.分析过程

(1)数据读取

首先通过pandas库读取数据,代码如下:

import pandas as pd
df = pd.read_excel('客户价值数据表.xlsx')
df.head()  # 显示前5行数据

通过打印df.head()查看表格的前5行,结果如下所示:

其中第1列“客户价值”为目标变量y,其余4列为特征变量X,接下来将利用这些数据搭建客户价值预测模型。

(2)提取特征变量和目标变量

在建模前,首先将特征变量和目标变量分别提取出来,代码如下:

# 将数据框 df 中名为 '客户价值' 的列删除,作为特征矩阵存储在 X 中
X = df.drop(columns='客户价值') 
# 将数据框 df 中的 '客户价值' 列提取出来,作为目标变量存储在 y 中
y = df['客户价值']   



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

律己杂谈

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值