velodyne_msgs/VelodyneScan消息转化为sensor_msgs/PointCloud2消息

test.bag 中有一个话题 /hdl64/velodyne_packets,消息类型为 velodyne_msgs/VelodyneScan(不是ros内置消息)

需要将其转化为point_cloud2形式的消息。

1、下载并编译velodyne的ros驱动(用catkin_make_isolated编译,而不是catkin_make)

mkdir -p ~/new_workspace/src
cd ~/new_workspace/src
git clone https://github.com/ros-drivers/velodyne.git
cd ..
catkin_make_isolated
source ~/new_workspace/devel_isolated/setup.bash

2、启动转换节点(有问题就再执行一下上面的 source 命令)

rosrun nodelet nodelet standalone velodyne_pointcloud/CloudNodelet _calibration:="/home/alan/alan_yaml/velodyne_lidar_VLP32db.yaml"

该节点默认订阅 /velodyne_packets 话题,消息类型为 velodyne_msgs/VelodyneScan 。转换完发布到 /velodyne_points 话题,消息类型为 sensor_msgs/PointCloud2

标定文件 velodyne_lidar_VLP32db.yaml 格式:

lasers:
- {dist_correction: 0.0, dist_correction_x: 0.0, dist_correction_y: 0.0, focal_distance: 0.0,
  focal_slope: 0.0
ROS中,将 `sensor_msgs/PointCloud2` 格式的数据换为适用于速腾(RoboSense)激光雷达的 `velodyne_msgs/VelodyneScan` 格式,通常需要将点云数据重新打包为符合Velodyne扫描数据结构的格式。这种换通常涉及对点云数据的解析、坐标变换以及重新组织为类似Velodyne驱动所发布的原始数据包结构。 以下是一个基本的实现思路和步骤: ### 1. 点云数据解析 使用 `pcl` 或 `sensor_msgs/point_cloud2` 模块解析 `sensor_msgs/PointCloud2` 消息中的点云数据。例如: ```python import sensor_msgs.point_cloud2 as pc2 cloud_data = pc2.read_points(cloud_msg, field_names=("x", "y", "z"), skip_nans=True) ``` ### 2. 构建VelodyneScan消息结构 `velodyne_msgs/VelodyneScan` 消息由多个 `VelodynePacket` 构成,每个 packet 包含 1206 字节的数据,通常包含激光雷达的角度、距离、强度等信息。需要将点云数据按照扫描线和角度进行分组,并模拟 Velodyne 数据包的结构。 以下是一个简化的示例代码片段: ```python from velodyne_msgs.msg import VelodyneScan, VelodynePacket import math def create_packets(cloud_data): scan_packets = VelodyneScan() # 模拟生成多个packet for i in range(0, len(cloud_data), 32): # 假设32线雷达 packet = VelodynePacket() # 填充packet数据(简化) packet.data = b'\x00' * 1206 # 实际应根据点云构造 scan_packets.packets.append(packet) return scan_packets ``` ### 3. 坐标换与角度分组 由于 `sensor_msgs/PointCloud2` 中的点云是基于笛卡尔坐标系的,因此需要将其换为极坐标系(角度和距离),并按照激光雷达的扫描线进行分组。例如: ```python def cart_to_polar(x, y, z): distance = math.sqrt(x**2 + y**2 + z**2) angle = math.atan2(y, x) return distance, angle ``` ### 4. 模拟雷达扫描周期 Velodyne 雷达通常每 100 毫秒完成一次 360 度扫描。在换过程中,应确保生成的 `VelodyneScan` 消息具有类似的时间间隔和角度分辨率。 ### 注意事项 - 该换过程是模拟性质的,因为 `VelodyneScan` 消息本质上是原始 UDP 数据包的封装,而 `PointCloud2` 是处理后的点云数据。 - 如果目标雷达为速腾(RoboSense),建议查阅其 ROS 驱动文档,确认其是否支持原生的 `sensor_msgs/PointCloud2` 输入,以避免不必要的格式换。 - 实际部署中,可能需要对点云进行降采样或插值,以匹配目标雷达的分辨率和帧率。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值