Pytorch基础 - 3. torch.utils.tensorboard

本文介绍了如何使用PyTorch中的torch.utils.tensorboard模块进行TensorBoard可视化,包括可视化单条和多条训练曲线,以及网络结构。通过基本步骤和多个示例,详细阐述了TensorBoard在PyTorch项目中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. 简介

2. 基本步骤

3. 示例1 - 可视化单条曲线

4. 示例2 - 可视化多条曲线

5. 示例3 - 可视化网络结构


1. 简介

Tensorboard是Tensorflow的可视化工具,常用来可视化网络的损失函数,网络结构,图像等。后来将Tensorboard集成到了PyTorch中,常使用torch.utils.tensorboard来进行导入。官网地址:TensorBoard — PyTorch

2. 基本步骤

(1) 首先执行如下代码,具体含义写在注释里

from torch.utils.tensorboard import SummaryWriter

if __name__ == '__main__':
    # 新建实例, log_dir为生成文件的存储地址, 不写参数默认是./run/文件夹下
    writer = SummaryWriter(log_dir='events存储地址')
    # 调用对象的方法,给文件写入数据
    writer.add_scalar(tag="show1", scalar_value=loss, global_step=epoch)
    writer.add_scalars(main_tag="show2", tag_scalar_dict={'fun1': None, 'fun2': None}, global_step=epoch)
    writer.add_graph(model=model, input_to_model=input)
    # 关闭writer
    writer.close()

(2) 执行完上述代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值