目录
在讲PyTorch这个系列之前,先讲一下pytorch中最常见的tensor张量,包括数据类型,创建类型,类型转换,以及存储方式和数据结构。
1. Tensor数据类型
(1) 一共包括9种数据类型,3大类
torch.LongTensor常用在深度学习中的标签值 ,比如分类任务中的类别标签0,1,2等torch.FloatTensor常用做深度学习中可学习参数或者输入数据的类型
(2) pytorch中的 type() 和 dtype
tensor.type():返回的是数据所属的Tensor类型,如 torch.LongTensor等
tensor.dtype:返回的是tensor数据自身的类型,如 torch.int8, torch.long等
x = torch.tensor([1, 2])
print(x.dtype) # torch.int64
print(x.type()) # torch.LongTensor
(3) pytorch默认的整数是int64, 默认的浮点数是float32。
x = torch.tensor([1, 2, 3])
print(x.dtype) # torch.int64
y = torch.tensor([1., 2., 3.])
print(y.dtype) # torch.float32
(3) 使用两种方式创建不同类型的张量
【方式1】直接在后面用dt