已开源:Highcharts.NET,Highcharts Android,与Highcharts iOS集成

近期了解到,Highcharts官方宣布将Highcharts.NET,Highcharts Android,与Highcharts iOS集成转换为开源。

对于Highcharts提供世界一流的数据可视化工具,一直致力于将资源集中在可以为您提供最大价值的地方。

官方提到:这不是一个轻易的改变,我们理解这对一直依赖这些集成整合的人们会有一些影响。然而,基于对当前用户的使用请情况以及维护成本的分析,我们相信当我们投入在更受欢迎的集成平台上时,我们的资源会有更多的积极意义与影响,比如即将推出的Highcharts Flutter, 和升级版Highcharts React.

Highcharts 将 .NET、Android 和 iOS 集成库开源,不仅降低了开发门槛,还通过社区协作增强了其技术活力。

这一举措有助于 Highcharts 在数据可视化领域保持领先地位,同时推动更广泛的应用和创新。对于开发者而言,这意味着更自由、更灵活的数据可视化解决方案

其实,通过开源,这些集成将继续可用,并且可以由社区成员进行改进和开发。这样做的价值在于:

  1. 社区驱动:开源允许开发者参与到项目中,提出改进建议和贡献代码,从而推动技术进步。
  2. 持续可用性:即使Highcharts不再直接维护这些集成,社区也可以确保它们继续存在并得到更新。
  3. 资源集中:Highcharts能够将资源集中于更广泛需求的集成和工具上,例如即将推出的Highcharts Flutter和改进的Highcharts React。
  4. 透明性:开源项目通常会有更高的透明度,用户可以查看和理解代码,增强信任感。

Highcharts相信开发者社区会继续完善这些集成。对需要的人来说,以及对未来可能不断提升Highcharts的社区成员来说,这些都是随时可用的。

 

内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值