- 博客(539)
- 资源 (3)
- 问答 (1)
- 收藏
- 关注

原创 一文搞懂:如何在深度学习中使用GPU和cuda加速
接下来,我们使用 x.tolist() 方法将 x 转换为Python列表并将其添加到 result 中,或者使用 x.cpu().numpy() 方法将 x 转换为CPU上的NumPy数组,然后将该数组添加到 result 中。不是的,len(Xdata)并不在GPU上。要在GPU上创建一个列表,并将张量对象添加到该列表中,可以使用PyTorch的torch.Tensor.tolist()方法或者torch.Tensor.cpu().numpy()方法先将张量转换为NumPy数组,再将数组添加到列表中。
2023-12-02 10:17:42
9148
2

原创 菜鸟学Java public static void main(String[] args) 是什么意思?
包名的层数没有硬性的限制要求,你可以根据需要组织包的层次结构。一般来说,官方网站或文档会提供相应的版本兼容性信息,你可以参考这些信息选择适合你的项目的版本。而对于第三方库和框架包,你需要下载相应的库文件,并在项目中进行配置和引用,以便使用其功能。方法中使用其他类型的参数,你可以将命令行传入的字符串参数解析为你需要的类型。),包含了方法要执行的代码块。在这个例子中,方法体内部没有给出具体的代码,你可以在这个代码块中添加你要执行的操作。对于包的层数并没有硬性的限制要求,你可以根据自己的需要来组织包的层次结构。
2023-06-25 17:16:31
29557
7

原创 联邦学习算法介绍-FedAvg详细案例-Python代码获取
在DP-FedSGD中,被选中的参与方使用全局模型参数对局部模型进行初始化,通过批梯度下降法进行多轮梯度下降,计算梯度更新量。而在DP-FedAVG中,是利用一个批次的数据进行一次梯度下降,计算梯度更新量。由服务端收集各客户端的梯度信息,通过聚合计算后再分发给各客户端,从而实现多个客户端联合训练模型,且“原始数据不出岛”,从而保护了客户端数据隐私。假设中心方是好奇的,那么客户端通过某种规则向其他客户端广播梯度信息,收到梯度信息的客户端聚合参数并训练,将新的梯度信息广播。面向神经网络模型, 假设网络总共有。
2023-03-12 10:36:34
26282
190

原创 知识图谱-命名实体-关系-免费标注工具-快速打标签-Python3
你好!这是一款实体关系联合标注的本地小程序,以Python3Python3Python3实现。本系统是一种标注文本语料中命名实体与关系或属性的半自动化软件系统,应用PythonPythonPython编程实现可视化界面和主要功能,利用HTMLHTMLHTML和CSSCSSCSS提示标注教程与规范(无需关心它们如何实现)。利用本系统进行文本标注将原始段落文本更新为带有事先定义的命名实体、关系或属性的文本标签数据。
2022-10-31 15:44:50
8698
101

原创 python爬虫技术实例详解及数据可视化库
前言在当前数据爆发的时代,数据分析行业势头强劲,越来越多的人涉足数据分析领域。面对大量数据,人工获取信息的成本高、耗时长、效率低,是否能用代码去完成大量复杂的工作,从而从网络上获取到目标信息?由此,网络爬虫技术应运而生。网络爬虫简介网络爬虫(web crawler,又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种用来自动浏览万维网的程序或者脚本。爬虫可以验证...
2020-02-24 11:58:56
7920
8
原创 Matplotlib 中调整 坐标轴和刻度线粗细
Matplotlib坐标轴样式调整指南 本文介绍了Matplotlib中调整坐标轴刻度和轴线样式的多种方法。对于刻度线调整,推荐使用tick_params()函数,可单独控制主次刻度的宽度、长度和颜色,支持面向对象和全局配置方式。轴线粗细可通过spines对象设置,支持单独调整各边轴线和隐藏特定轴线。两种调整都提供了全局默认设置选项(rcParams)。完整示例演示了如何组合使用这些方法,包括启用次刻度、设置网格线等注意事项。建议将刻度线和轴线宽度设为1.5-3磅,使用深色以确保打印清晰度。这些方法使科研图
2025-07-17 13:03:33
299
原创 Matplotlib 轴标题与刻度字号调整方法
Matplotlib 轴标题与刻度字号调整方法摘要 轴标题调整 xlabel()/ylabel():直接设置字号(fontsize=14) rcParams全局设置:plt.rcParams['axes.labelsize'] = 14 面向对象方式:通过ax.set_xlabel(fontsize=14) 刻度字号调整 tick_params():plt.tick_params(axis='both', labelsize=14) 单独设置:plt.xticks(fontsize=14) 全局设置:修改p
2025-07-17 10:36:26
214
原创 linux wsl2 docker 镜像复用快速方法
摘要:要将单个b.py文件集成到现有A项目的开发环境中,推荐使用Docker方式。方法一:通过Docker命令行构建镜像并运行容器执行b.py;方法二(推荐):在VS Code中创建.devcontainer配置,复用A项目的Docker环境;方法三:启动交互式容器直接开发。关键配置包括路径映射、工作目录设置和GPU支持。验证成功后可看到JAX正确识别GPU设备。建议创建可重用模板项目,方便后续开发复用环境配置。(150字)
2025-07-08 20:23:31
480
原创 latex Beamer中图片、表格设置显示序号
摘要:在Beamer的Boadilla主题中实现表格自动编号有两种方法:1) 在导言区添加\setbeamertemplate{caption}[numbered]启用全局编号;2) 自定义标题格式如\setbeamertemplate{caption label}{\inserttablenumber. }修改编号样式。两种方式均可将默认"Table:"格式转为"Table 1:"的自动编号效果,需注意加载booktabs包支持三线表格式,并通过\ref{}正确引用
2025-07-04 14:11:35
47
原创 latex中使用定义定理推论等独立编号且节号可选
LaTeX中实现环境独立编号的解决方案:通过创建新环境并重定义标准环境,实现定理、定义和推论的独立编号。关键步骤包括:1)使用\newtheorem创建独立计数环境;2)通过\renewenvironment保持原有环境名称;3)保留加粗标题样式。如需去除节号前缀(如1.1变为1),只需移除[section]参数。该方案兼容现有文档结构,保持Beamer主题集成,同时提供灵活的自定义选项(如编号格式、颜色设置等)。使用示例证明该方法能有效实现各环境的独立连续编号,同时维护文档一致性。
2025-07-04 10:58:01
63
原创 取消latex Beamer 中,右下角的导航按钮
移除 Beamer 右下角导航按钮的方法: 推荐方案:在导言区添加\setbeamertemplate{navigation symbols}{}可完全清除所有导航按钮; 选择性移除:通过自定义navigation symbols保留指定按钮; 主题调整:改用default等简洁主题,或通过\setbeamertemplate{footline}{}隐藏整个页脚。注意代码需置于主题声明后,部分主题可能需额外适配。方法1最简洁高效,适合大多数场景。 (摘要字数:98字)
2025-07-03 19:03:06
45
原创 latex Beamer 的主题(如 Boadilla)没有定理编号的解决方案
摘要:修改 Beamer 中 theorem 环境以显示编号时,原有样式可能消失。通过调整 theorem begin 模板,保留主题的方框、背景色等装饰,同时强制显示编号。解决方案为使用 block 环境并插入 \inserttheoremnumber,确保视觉风格一致。需注意不同主题的样式差异,并按需设置编号格式。修改后定理标题将显示为"Theorem 1",且保留原有主题设计。
2025-07-03 18:47:15
27
原创 git rebase多次触发冲突
摘要:本文记录了Git rebase操作中出现的合并冲突问题及解决方法。在将本地分支rebase到upstream/main分支时,CONTRIBUTING.md文件出现内容冲突。分析显示,多个提交修改了同一文件导致连续冲突。解决方案包括:1)手动编辑冲突文件,保留/合并所需内容;2)用git add标记冲突解决;3)继续rebase流程。若冲突过多,可选择跳过(--skip)或终止(--abort)rebase。建议通过合并提交、使用git pull --rebase和拆分大改动来预防类似问题。关键点在于
2025-07-03 17:57:07
1077
原创 git 中删除提交历史
摘要: 本文针对删除Git存储中的绿色分支(stash@{0} WIP on main: bc30916 fix(A-test): none)提供两种方案: 仅删除stash记录:通过git stash drop stash@{0}安全移除,不影响提交历史,适用于清理临时工作内容。 彻底删除提交历史:使用git rebase -i交互式变基删除bc30916提交,需谨慎操作并协调团队。 关键区别:前者仅清理存储栈,后者重写历史。操作前建议备份未提交内容,删除后不可恢复。
2025-07-03 17:33:47
241
原创 【SSH 密钥未正确设置】Permission denied (publickey). fatal: Could not read from remote repository.
你的问题核心是。
2025-07-03 09:54:38
871
原创 WSL+Docker 复用镜像方法
复用现有开发环境镜像快速创建隔离项目环境 通过复用现有配置完善的开发环境镜像,可以快速为新项目创建隔离开发环境,避免重复下载依赖。核心步骤包括:1)创建项目骨架;2)配置.devcontainer文件指向现有镜像;3)启动容器开发环境。该方法具有三大优势:零重复下载(直接复用现有镜像)、环境一致性(共享基础环境)和项目隔离(独立挂载卷)。实测可将新项目环境搭建时间从45分钟降至28秒。关键技巧包括动态挂载路径、继承环境变量和按需扩展依赖,同时提供了多项目管理策略和常见问题解决方案。
2025-07-02 23:33:20
1066
原创 -uid 镜像选择
摘要:镜像列表显示两个20.5GB的VSCode开发容器镜像,其中带-uid后缀的是适配用户权限的特殊镜像,建议开发时优先使用。该镜像会自动匹配宿主机用户权限,解决容器内外文件权限冲突问题。基础镜像(无后缀)适合纯运行环境,而-uid镜像支持无缝文件编辑,是VSCode开发的最佳实践。使用前可通过whoami命令验证用户权限配置,并在devcontainer.json中指定-uid镜像以确保开发体验。(149字)
2025-07-02 23:30:55
325
原创 WSL2 + Docker Desktop 环境中查看本地镜像
在 WSL2 + Docker Desktop 环境中查看本地镜像的方法总结: 使用 docker images 或 docker image ls 查看全部镜像; 通过 --filter 参数过滤镜像,或 -q 仅显示镜像ID; 在 Docker Desktop 图形界面中查看; 使用 docker inspect 查看镜像详情或 docker history 分析分层结构; 镜像存储在 WSL2 的 /var/lib/docker 路径下。 常用参数包括 -a(显示所有层)、--no-trunc(完整I
2025-07-02 23:28:59
321
原创 新版本没有docker-desktop-data分发 | docker desktop 镜像迁移
在新版本的docker desktop中(如4.21版本),镜像迁移只需要更改路径即可。打开docker desktop的设置(图1),将图2的原来的地址。修改为你想要的空文件夹即可,如“
2025-07-02 22:27:28
646
原创 Linux 系统中常用的文件和文件夹管理命令 and 常用快捷键
本文总结了Linux系统中常用的文件和目录管理命令,分为目录操作、文件操作、文件内容操作、权限与属性、查找与压缩、磁盘与空间六大类。每个命令均配有作用说明和示例,如mkdir创建目录、grep文本搜索、chmod修改权限等。此外还提供了实用快捷键指南,如Ctrl+C终止命令、!!重复上条命令等。掌握这些命令和快捷键可以显著提升Linux环境下的工作效率,建议结合man手册深入学习具体用法。
2025-07-02 19:24:01
867
原创 Docker Desktop导致存储空间不足时的解决方案
摘要:Docker Desktop默认安装在C盘时,可通过多种方式修改安装位置或镜像存储路径。主要方法包括:重装时指定安装目录、使用软链接迁移安装目录、通过WSL导出/导入迁移镜像数据、修改Docker设置中的磁盘位置等。其中WSL导出/导入是最推荐的官方解决方案。操作前需备份数据,确保目标盘空间充足,并需要管理员权限。还可配合定期清理无用镜像、监控磁盘使用等优化措施,有效解决C盘空间不足问题。(148字)
2025-07-02 19:09:35
632
原创 windows系统下将Docker Desktop安装到除了C盘的其它盘中
在Windows系统下安装Docker时默认会安装在C盘,但可通过命令行指定安装路径。本文提供了4种方法修改安装目录(如H:\Docker):推荐使用PowerShell的Start-Process命令,也可通过CMD执行或参数转义方式实现。注意事项包括:需提前创建目标文件夹、以管理员权限运行、检查安装程序版本。安装完成后需验证目标路径是否生成Docker相关文件。若失败建议卸载后重试。
2025-07-02 19:06:52
310
原创 样本方差是总体方差的无偏估计
在高斯-马尔可夫假设条件下,线性回归模型为YZβεYn×1Zn×r1rankZr1βr1×1εn×1Eε∣Z0Varε∣Zσ2Inσ2OLS 估计的残差向量为εY−Zβ,其中βZ′Z−1Z′Y。残差平方和为ε′εs2n−r−1ε′εn−r−1Y′I−HY其中HZZ′Z−1Z′是帽子矩阵(对称且幂等),且I−H也是对称且幂等。
2025-06-21 17:32:01
438
原创 统计学中的大Op和小op
在统计学和渐近理论中,符号 OpO_pOp 和 opo_pop 用于描述随机序列的收敛速度(即随机有界性和依概率收敛到零)。它们是确定性大O和小o符号的概率版本,其定义和计算关系如下:anXn>Mε)≤ε.直观理解:XnX_nXn 的增长速度不超过 ana_nan 的阶(类似确定性的大O符号),但允许随机波动。例如:由中心极限定理,n(Xˉn−μ)=Op(1)\sqrt{n} (\bar{X}_n - \mu) = O_p(1)n(Xˉn−μ)=Op(1)(因渐近服从正态
2025-06-11 02:56:07
1075
原创 对F1分数的基本认识
模型存在严重问题,需要排查。有潜力但需大力优化。不错的表现,很多应用可接受。优秀的表现。接近完美(需谨慎验证)。然而,永远将F1分数放在具体问题的上下文中解读,结合精确率、召回率、混淆矩阵、业务目标和领域知识进行综合判断,才能真正理解模型的实用价值。不要被单一指标所迷惑!
2025-06-08 11:57:26
976
原创 文言文停词库 | 古文、古籍停词库 | 624个简体停词 |文言文python分词库-thulac
摘要:本文介绍了文言文分词工具THULAC的使用方法,包括安装步骤和Python代码示例,展示了对古文"臣亮言:先帝創業未半而中道崩殂"的分词结果。同时提供了一份包含624个文言文虚词的停用词表,涵盖助词、连词等非实义成分,适用于古文文本处理。工具和词库结合使用,可有效提升文言文文本分析效果。
2025-06-01 17:09:33
338
原创 【差分隐私】目标扰动机制(Objective Perturbation)
目标扰动机制通过向优化目标注入噪声,在保护个体数据隐私的同时保持模型效用,是差分隐私在机器学习中的核心方法之一。其成功依赖于敏感度的精确计算、噪声分布的合理选择以及隐私预算的优化分配。随着联邦学习等分布式场景的发展,目标扰动机制在平衡隐私与效用上面临更多挑战与创新空间。
2025-04-28 16:09:11
1202
原创 函数间@符号装饰器
的语法糖,用于动态修改函数或类的行为。装饰器本质上是一个高阶函数,接受被装饰的函数作为参数,并返回一个新函数。是 Python 装饰器的通用语法。装饰器在深度学习、Web 开发、工具库中广泛应用,是实现代码复用和功能扩展的核心机制。对批量矩阵乘法进行性能优化的示例,核心目标是验证并对比手动批处理与 JIT 编译后的执行效率。是 JAX 的性能优化装饰器,而 @在 Python 中,@用户提供的代码是使用。用户代码中的 @jit。
2025-04-27 10:51:20
419
原创 【jax】@符号装饰器
的语法糖,用于动态修改函数或类的行为。装饰器本质上是一个高阶函数,接受被装饰的函数作为参数,并返回一个新函数。是 Python 装饰器的通用语法。装饰器在深度学习、Web 开发、工具库中广泛应用,是实现代码复用和功能扩展的核心机制。对批量矩阵乘法进行性能优化的示例,核心目标是验证并对比手动批处理与 JIT 编译后的执行效率。是 JAX 的性能优化装饰器,而 @在 Python 中,@用户提供的代码是使用。用户代码中的 @jit。
2025-04-27 10:49:44
682
原创 【jax】纯函数(Pure Function)
“纯函数”在编程领域通常指无副作用且输出仅依赖于输入的函数(常见于函数式编程)定义:纯函数是函数式编程中的核心概念,具有以下特性:案例:
2025-04-27 10:46:30
181
原创 【jax】自动微分(JAX的grad函数)
以下两段代码分别使用**自动微分(Automatic Differentiation)有限差分法(Finite Differences)**计算函数。,并通过 JIT 编译优化计算速度。,高效计算了标量函数的三阶导数,体现了 JAX 在。处的梯度,并通过对比展示两种方法的差异。
2025-04-27 10:44:52
673
原创 【jax】SELU(Scaled Exponential Linear Unit)激活函数
输入参数x:输入张量(可以是标量、向量或矩阵)。alpha和lmbda:SELU的预设参数,默认值为近似值(lmbda拼写避免与Python关键字lambda冲突)。计算逻辑使用jnp.where进行条件判断:若x > 0,输出x;否则输出。最终结果乘以缩放因子lmbda,完成归一化。
2025-04-27 10:41:41
793
好好画词云图,完整项目数据和代码
2023-04-07
知识图谱-命名实体-关系-免费标注工具-快速打标签-Python3
2022-10-31
完全去中心化的学习(Fully Decentralized Learning)简要
2023-04-25
RFM客户分类模型方法
2023-04-25
with torch.no_grad()和model.eval()在干什么?
2023-04-24
和我一起学机器学习-K近邻法
2023-04-24
和我一起学机器学习-朴素贝叶斯法
2023-04-24
循环神经网络RNN--文本分类--完整代码免费下载
2023-04-24
文本卷积网络textCNN--文本分类--完整代码免费下载
2023-04-24
和我一起学机器学习-决策树
2023-04-24
和我一起学机器学习-逻辑斯蒂回归(Logistic Regression)
2023-04-24
freebase的entity id到真实数据的映射 数据集
2021-12-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人