洛谷P1638 逛画展(双指针详解)

本文介绍了一种使用双指针法解决寻找包含特定数量不同元素区间的算法问题。通过逐步移动左右指针,该方法能有效地找到符合条件的最小区间,并提供了一个具体的实现示例。

题目描述

博览馆正在展出由世上最佳的 m 位画家所画的图画。

游客在购买门票时必须说明两个数字,a 和 b,代表他要看展览中的第 a 幅至第 b 幅画(包含 a,b)之间的所有图画,而门票的价钱就是一张图画一元。

Sept 希望入场后可以看到所有名师的图画。当然,他想最小化购买门票的价格。

请求出他购买门票时应选择的 a,b,数据保证一定有解。

若存在多组解,输出 a 最小的那组

输入格式

第一行两个整数 n,m,分别表示博览馆内的图画总数及这些图画是由多少位名师的画所绘画的。

第二行包含 n 个整数 ai​,代表画第 i 幅画的名师的编号。

输出格式

一行两个整数 a,b。

输入输出样例

输入 #1

12 5
2 5 3 1 3 2 4 1 1 5 4 3

输出 #1

2 7

说明/提示

数据规模与约定

  • 对于 30% 的数据,有 n≤200,m≤20。
  • 对于 60% 的数据,有 n≤105,m≤103。
  • 对于 100% 的数据,有 1≤n≤106,1≤ai​≤m≤2×103。

题目大意

此题想让我们从给定数列中找一个包含m个不同值的区间

这道题我们来用双指针(尺取法)来做

思路大概是这样的:

1. 先定义两个变量L和R

2. 固定左端点L,向后挪动右端点R,直到当前区间[L, R]出现m个不同的值

3. 再挪移左端点L,如果区间[L, R]还满足包含m个不同的值判断此区间是否优于第二步求出的区间,更新数据;如果区间[L, R]不满足包含m个不同的值,那就挪移右端点R直到满足条件,再判断此区间是否优于第二步求出的区间,更新数据。

来看代码(注意看注释

#include <iostream>
using namespace std;
const int N0 = 1e6 + 5;
const int N10 = 2e3 + 5;
int N, M;
int a[N0];//原数组
int h[N10];//桶排数组
int cnt;//计数,看此区间内包含几个不同的值
int l, r;//临时的左端点和右端点
int lb, rb, sz;//分别表示最终的左端点,右端点和大小
int main(){
	ios::sync_with_stdio(false);
	cin >> N >> M;
  	for(int i = 1; i <= N; i++){
	 	cin >> a[i];
	}
	l = 1;//初始化
	for(r = 1; r <= N; r++){
		if(h[a[r]] == 0){//判断a[r]有没有在之前的数组中出现,如果没有,那cnt++
			cnt++;
		}
		h[a[r]]++;
		if(cnt == M){
			sz = r - l + 1;
			lb = l;
			rb = r;
			break;
		}
	}
	for(l = 2; l <= N; l++){
		if(h[a[l - 1]] == 1) cnt--;
		h[a[l - 1]]--;
		while(cnt < M && r + 1 <= N){//数组中有不到m个不同的值,挪移r
			r++;
			if(h[a[r]] == 0) cnt++;
			h[a[r]]++;
		}
		if(cnt == M){//如果数组中有m个不同的值,判断是否更新
			if(r - l + 1 < sz){
				sz = r - l + 1;
				rb = r;
				lb = l;
			}
		}
	}
	cout << lb << " " << rb;//输出
	return 0;
}

双指针算法是一种高效的算法技巧,常用于解决数组、字符串、滑动窗口等问题。它通常包含两个指针,一个“快指针”和一个“慢指针”,通过它们的相对移动来解决问题。以下是一些与双指针算法相关的题目推荐,适合练习和深入理解该算法。 ### 1. P1102 A-B 数对 问题描述:给定一个整数数组和一个目标值 $ c $,求所有满足 $ A - B = c $ 的数对 $ (A, B) $ 的个数。 解决思路:可以先对数组进行排序,然后使用双指针技巧来统计符合条件的数对。具体做法是维护两个指针 $ b1 $ 和 $ b2 $,通过比较 $ arr[a] - arr[b1] $ 和 $ arr[a] - arr[b2] $ 与 $ c $ 的关系,移动指针并统计结果。 ### 2. P1638 画展 问题描述:给定一个画展的时间段和画家的出现顺序,求满足所有画家都出现的最短时间段。 解决思路:使用双指针法(滑动窗口)来寻找满足条件的最小区间。通过左右指针的移动,逐步缩小窗口大小,直到找到满足条件的最小窗口。 ### 3. A1147 连续自然数和 问题描述:给定一个自然数 $ m $,找出所有连续自然数序列,使得它们的和等于 $ m $。 解决思路:使用双指针法(滑动窗口)来寻找连续的自然数序列。通过维护一个滑动窗口的左右边界,逐步调整窗口的大小,直到找到符合条件的序列。 ### 4. P2872 Fence Repair(类似题目) 问题描述:给定一个数组,要求将数组分割成若干个子数组,使得每个子数组的最大值之和最小。 解决思路:虽然该题的最优解通常使用贪心算法或优先队列,但也可以通过双指针法来实现。通过维护一个滑动窗口,计算窗口内的最大值,并逐步调整窗口大小。 ### 5. P1908 逆序对(双指针变种) 问题描述:求一个数组中的逆序对数量。 解决思路:虽然该题通常使用归并排序解决,但也可以通过双指针法的变种来实现。通过维护两个指针,分别指向两个有序子数组,并统计逆序对的数量。 ### 示例代码: P1102 A-B 数对 ```cpp #include <iostream> #include <algorithm> #include <cstdio> using namespace std; typedef long long ll; int n, c; int arr[200020]; int main() { scanf("%d %d", &n, &c); for (int i = 1; i <= n; ++i) cin >> arr[i]; sort(arr + 1, arr + 1 + n); // 对输入的数组进行排序 ll res = 0; // 因为数据使用int会溢出,所以用long long // 三个指针:快指针a,慢指针b1, b2 for (int a = 1, b1 = 1, b2 = 1; a <= n; ++a) { while (b1 <= a && arr[a] - arr[b1] >= c) b1++; while (b2 <= a && arr[a] - arr[b2] > c) b2++; res += b1 - b2; } printf("%lld", res); return 0; } ``` ### 双指针算法的核心思想 双指针算法的核心思想是通过两个指针的移动来解决问题。通常,一个指针作为“快指针”,另一个作为“慢指针”。快指针用于遍历数据,而慢指针用于维护某些条件。通过快慢指针的配合,可以高效地解决许多问题,例如寻找中间元素、滑动窗口等。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值