超好“水”小论文:因果推断+机器学习!9种创新思路,get到直接毕业!

2025深度学习发论文&模型涨点之——因果推断+机器学习

    • 因果推断理论:潜在结果框架和结构因果模型是因果推断的两种基本理论。潜在结果框架假设每个个体都有两种潜在结果,即接受处理和未接受处理时的结果,因果效应就是这两种潜在结果的差异。结构因果模型则通过有向无环图(DAG)来表示变量之间的因果关系。

    • 机器学习理论:机器学习包括监督学习、无监督学习、半监督学习和强化学习等类型。监督学习使用标签数据进行训练,无监督学习使用无标签数据进行训练,半监督学习使用部分标签数据进行训练,强化学习通过与环境的互动学习。

    小编整理了一些因果推断+机器学习【论文】合集,以下放出部分,全部论文PDF版皆可领取。

    需要的同学扫码添加我

    回复“ 因果推断+机器学习”即可全部领取

    论文精选

    论文1:

    Causal machine learning for predicting treatment outcomes

    因果机器学习用于预测治疗结果

    方法

      • 因果机器学习(Causal ML):利用因果推断方法,从数据中估计治疗效果,包括疗效和毒性,支持药物评估和安全性分析。

        潜在结果框架(Potential Outcomes Framework):基于潜在结果框架,定义了平均处理效应(ATE)和条件平均处理效应(CATE),用于评估治疗效果。

        因果图(Causal Graph):通过因果图表示变量之间的因果关系,帮助理解数据生成机制和假设条件。

        图片

      创新点

            • 个体化治疗效果估计:能够估计个体化治疗效果,为临床决策提供更精准的依据,相比传统方法,Causal ML可以更好地处理高维和非结构化数据,如医学图像、文本和时间序列数据。

              处理异质性:有效处理治疗效果的异质性,识别对治疗反应不同的患者亚组,为个性化医疗提供支持。

              数据驱动的决策支持:结合临床试验数据和真实世界数据,如电子健康记录,为临床决策提供更全面的数据支持。

              图片

            论文2:

            Improving the accuracy of medical diagnosis with causal machine learning

            用因果机器学习提高医疗诊断的准确性

            方法

                • 因果诊断算法(Causal Diagnostic Algorithms):将诊断重新定义为反事实推理任务,提出了基于反事实的诊断算法。

                  必要和充分因果关系(Necessary and Sufficient Causation):定义了两种因果关系,用于量化疾病对症状的因果解释能力。

                  贝叶斯网络(Bayesian Networks):使用贝叶斯网络作为疾病模型,结合因果图理论,推导出反事实诊断度量。

                  图片

                创新点

                      • 反事实推理:将诊断任务定义为反事实推理问题,相比传统关联诊断方法,能够更准确地识别疾病对症状的因果解释,诊断准确率从传统方法的72.52%提升到77.26%,在罕见病诊断中提升更为显著,对于非常罕见疾病的诊断准确率提升了32.9%。

                        因果定义的诊断:提出了基于因果的诊断定义,更接近临床医生的诊断思维,提高了诊断的准确性和可靠性。

                        模型兼容性:提出的算法可以作为现有贝叶斯诊断模型的直接升级,无需改变疾病模型,具有很好的后向兼容性。

                        图片


                      论文3:

                      B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under Hidden Confounding

                      B-Learner:在隐藏混杂下对异质因果效应的准Oracle界限

                      方法

                      • B-Learner元学习器:提出了一种新的元学习器B-Learner,用于在隐藏混杂条件下估计条件平均处理效应(CATE)的界限。

                        双重稳健估计方程(Doubly Robust Estimating Equation):利用部分双重稳健的Neyman正交估计方程,确保估计的稳健性和有效性。

                        边际敏感性模型(Marginal Sensitivity Model, MSM):采用MSM量化隐藏混杂的程度,通过限制处理倾向比来控制混杂的影响。

                        图片

                      创新点

                            • 准Oracle性能:B-Learner在估计CATE界限时具有准Oracle性能,即使在存在隐藏混杂的情况下,也能提供有效的估计,其估计误差与Oracle估计相当。

                              隐藏混杂的处理:能够有效处理隐藏混杂问题,通过MSM模型量化混杂程度,为实际应用中难以避免的混杂问题提供了解决方案。

                              灵活性和通用性:B-Learner可以与任何函数估计器(如随机森林和深度神经网络)结合使用,具有很强的灵活性和通用性。

                              图片


                            论文4:

                            Inferring Heterogeneous Treatment Effects of Crashes on Highway Traffic: A Doubly Robust Causal Machine Learning Approach

                            推断交通事故对高速公路交通的异质性处理效应:一种双重稳健因果机器学习方法

                            方法

                              • Neyman-Rubin因果模型(RCM):采用RCM框架,将交通事故视为“处理”变量,将事故后的速度作为“结果”变量。

                                条件Shapley值指数(CSVI):基于因果图理论,提出CSVI用于筛选不良变量,提高因果效应估计的准确性。

                                结构因果模型(SCM):利用SCM定义因果效应的统计估计量,为因果推断提供理论基础。

                                图片

                              创新点

                                    • 异质性效应估计:能够估计不同类型交通事故对交通速度的异质性影响,提供更细致的因果效应分析。例如,追尾事故对交通的影响最为严重,其平均速度降低可达15英里/小时,而侧面碰撞事故的影响持续时间最长。

                                      变量选择优化:通过CSVI方法筛选出对因果推断有显著影响的变量,提高了模型的准确性和效率。在变量选择后,模型的平均绝对误差(MAE)从10.74降低到9.17,均方误差(MSE)从259.12降低到158.94。

                                      双重稳健性:DRL方法结合了倾向得分匹配和回归模型,即使在存在模型误设的情况下,也能提供稳健的因果效应估计。

                                      图片

                                    小编整理了因果推断+机器学习文代码合集

                                    需要的同学扫码添加我

                                    回复“因果推断+机器学习”即可全部领取

                                    评论
                                    添加红包

                                    请填写红包祝福语或标题

                                    红包个数最小为10个

                                    红包金额最低5元

                                    当前余额3.43前往充值 >
                                    需支付:10.00
                                    成就一亿技术人!
                                    领取后你会自动成为博主和红包主的粉丝 规则
                                    hope_wisdom
                                    发出的红包
                                    实付
                                    使用余额支付
                                    点击重新获取
                                    扫码支付
                                    钱包余额 0

                                    抵扣说明:

                                    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                    余额充值