24考研数二线代部分强化、冲刺阶段重要结论合集
文章目录
1 行列式计算方法
- 加边法(展开定理推论):外围加一圈
- 爪型通法:后几列逐渐消去第一列第 2 2 2行~第 n n n行, a 11 a_{11} a11项变成一个和式,行列式变成上/下三角
- 解行列式递推式 D n + α D n − 1 + β D n − 2 = 0 D_n+αD_{n-1}+βD_{n-2}=0 Dn+αDn−1+βDn−2=0 —— 二阶差分方程(仅供参考)
- 改写递推式为 D n + 2 + α D n + 1 + β D n = 0 D_{n+2}+αD_{n+1}+βD_{n}=0 Dn+2+αDn+1+βDn=0 ,将其视作微分方程 y ′ ′ + α y ′ + β y = 0 y''+αy'+βy=0 y′′+αy′+βy=0 来解
- 微调通解公式:用 r n r^n rn 替换 e r x e^{rx} erx 。其他完全一致
- 特征方程行列式转圈化简
- 顺/逆时针选择没有 λ \lambda λ 的数
- 化简其他没有 λ \lambda λ 的数
- 要求产生 λ \lambda λ 的公因子
2 矩阵·特征值·特征向量重要结论
AB=O性质
- A B = O ⇒ AB=O \Rightarrow AB=O⇒
- r ( A ) + r ( B ) ≤ n r(A)+r(B)≤n r(A)+r(B)≤n
填空第9题,然而做错了(
- B B B 的列向量均为齐次方程 A x = 0 Ax=0 Ax=0 的解
- 若 A A A 为 n n n 阶方阵,则 B B B 的非零列向量为 A A A 的特征值 0 0 0 的特征向量
- r ( A ) + r ( B ) ≤ n r(A)+r(B)≤n r(A)+r(B)≤n
求矩阵高次幂
- 秩为 1 1 1
r ( A ) = 1 ⇔ A = α β T , 其中 α 为 A 的极大无关组 , β T 由其系数构成 r(A)=1 \Leftrightarrow A=\alpha \beta^T,其中\alpha为A的极大无关组,β^T由其系数构成 r(A)=1⇔A=αβT,其中α为A的极大无关组,βT由其系数构成
∴ A n = α ( β T α ) ( β T . . . α ) β T = ( β T α ) n − 1 α β T \therefore A^n= \alpha (\beta^T \alpha) (\beta^T ... \alpha) \beta^T=(\beta^T \alpha)^{n-1}\alpha \beta^T ∴An=α(βTα)(βT...α)βT=(βTα)n−1αβT
即 A n = t r ( A ) n − 1 A A^n=tr(A)^{n-1}A An=tr(A)n−1A - 分解+二项式定理
对3阶矩阵 B = [ 0 0 0 a 0 0 c b 0 ] B=\begin{bmatrix} 0 &0 &0 \\ a & 0 & 0\\ c & b & 0 \end{bmatrix} B= 0ac00b000 ,俩数“往角落走”, B 2 = [ 0 0 0 0 0 0 a b 0 0 ] B^2=\begin{bmatrix} 0 &0 &0 \\ 0 & 0 & 0\\ ab & 0 & 0 \end{bmatrix} B2= 00ab000000 , B 3 = O B^3=O B3=O,称这种矩阵为 幂0矩阵。
故可将该三角矩阵 A A A 分解为单位矩阵和幂0矩阵之和: A = E + B A=E+B A=E+B
使用二项式定理展开可得 A n = ( E + B ) n = E n + C n 1 E n − 1 B + C n 2 E n − 2 B 2 A^n=(E+B)^n=E^n+C_n^1E^{n-1}B+C_n^2E^{n-2}B^2 An=(E+B)n=En+Cn1En−1B+Cn2En−2B2。
同理对4阶矩阵 C = [ 0 a d f 0 0 b e 0 0 0 c 0 0 0 0 ] C=\begin{bmatrix} 0 & a & d & f\\ 0 & 0 & b &e \\ 0 & 0 & 0 &c \\ 0 &0 & 0 &0 \end{bmatrix} C= 0000a000db00fec0 ,两两“一步步往角落走”, C 2 = [ 0 0 a b a b 2 c 0 0 0 b c 0 0 0 0 0 0 0 0 ] C^2=\begin{bmatrix} 0 & 0 & ab & ab^2c\\ 0 & 0 & 0 &bc \\ 0 & 0 & 0 & 0\\ 0 &0 & 0 &0 \end{bmatrix} C2= 00000000ab000ab2cbc00 , C 3 = [ 0 0 0 a b c 0 0 0 0 0 0 0 0 0 0 0 0 ] C^3=\begin{bmatrix} 0 & 0 & 0 & abc\\ 0 & 0 & 0 &0 \\ 0 & 0 & 0 &0 \\ 0 &0 & 0 &0 \end{bmatrix} C3= 000000000000abc000 , C 4 = O C^4=O C4=O 。之后同3阶情况展开。 - 分块:利用分块矩阵乘法
- 相似/相似对角化:直接求特征值,拼成 Λ \Lambda Λ
P − 1 A P = Λ = diag ( λ 1 , λ 2 , . . . , λ n ) P^{-1}AP=\Lambda=\text{diag}(\lambda_1,\lambda_2,...,\lambda_n) P−1