递归汉诺塔
斐波那契数列
我们知道,斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)
它的计算就是从第三项开始,当前项等前两项的和。
那么我们使用递归方法,来计算就会很简单。
public class Rec {
public int a(int i) {
//首先声明我们的前两项都为1,从第三项才能开始
if(i==1||i==2) {
return 1;
}else
//在a()方法里再次调用a()方法,从第三项开始时,每一项都等于前两项的和
return a(i-1)+a(i-2);
}
public static void main (String args[]) {
Rec r = new Rec();
//设置我们的n为11次,也就是我们加到第十一项
for(int i=1;i<11;i++) {
System.out.println(r.a(i)+" ");
}
}
}
运行一下我们可以看到结果
很简单就实现了。
汉诺塔
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
这里我们也可以用递归来写
public class Hanno {
public void move(int n,String x,String y,String z){
if (n==1){
System.out.println(x+"=>"+z);
}
else{
//C为中介,把A上的n-1个全都放到B上
move(n-1,x,z,y);
//把A中的第n个放到C上
System.out.println(x+"=>"+z);
//再以A为中介把B上的n-1个放到C上
move(n-1,y,x,z);
}
}
public static void main (String args[]) {
Hanno ta =new Hanno();
ta.move(3, "A", "B", "C");
}
}
也就是要将A上面的三个盘子,在借助B的情况下,移到C上,这里设置了n为3也就是三个盘子,设置为64,就是印度神话里的汉诺塔了。
运行结果:
以上就是递归的简单案例
递归其实就是在函数中自己调用自己,但是我们要知道,每一次的调用都会用到我们的栈,而我们的栈是有限的,如果在函数中无限调用自己,虚拟机一直进行压栈操作,很快就会出现栈溢出,也就是我们经常出现的错误,爆栈。
因此切记,我们要在方法中设置我们的递归次数,或者是设置结束循环的方法。
over~