tokenizer 中num_words 遇到的问题

本文通过实例解析了Keras Tokenizer中num_words参数的设置对输出序列的影响,强调了嵌入层输入维度调整的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

举个例子:

In [1]: from keras.preprocessing.text import Tokenizer
In [2]: texts = ['a a a', 'b b', 'c']
In [3]: tokenizer = Tokenizer(num_words=2)
In [4]: tokenizer.fit_on_texts(texts)
In [5]: tokenizer.word_index
Out[5]: {'a': 1, 'b': 2, 'c': 3}
In [6]: tokenizer.texts_to_sequences(texts)
Out[6]: [[1, 1, 1], [], []]

在程序中num_words=2,基于keras文档所示

num_words: 需要保留的最大词数,基于词频。只有最常出现的 num_words 词会被保留。

因此我们预想的输出是

[[1,1,1],[2,2],[]]

但是事实上不是这样的

原因如下:

 在embedding_layer = Embedding(num_words +1, ....) 中输入的维度是num_word+1,因此在tokenizer.texts_to_sequences()输出时,应是num_words-1,这样输入进入embeding layer时会在输出的维度上+1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值