举个例子:
In [1]: from keras.preprocessing.text import Tokenizer
In [2]: texts = ['a a a', 'b b', 'c']
In [3]: tokenizer = Tokenizer(num_words=2)
In [4]: tokenizer.fit_on_texts(texts)
In [5]: tokenizer.word_index
Out[5]: {'a': 1, 'b': 2, 'c': 3}
In [6]: tokenizer.texts_to_sequences(texts)
Out[6]: [[1, 1, 1], [], []]
在程序中num_words=2,基于keras文档所示
num_words: 需要保留的最大词数,基于词频。只有最常出现的 num_words
词会被保留。
因此我们预想的输出是
[[1,1,1],[2,2],[]]
但是事实上不是这样的
原因如下:
在embedding_layer = Embedding(num_words +1, ....) 中输入的维度是num_word+1,因此在tokenizer.texts_to_sequences()输出时,应是num_words-1,这样输入进入embeding layer时会在输出的维度上+1。