问题
想在Python中将数据框integrated_data的定性变量设为虚拟变量,但是当我运行下面的代码时,发生了错误。
# 虚拟变量
df = integrated_data
integrated_data = pd.getdummies(df, drop_first=True)
错误如下
AttributeError: module 'pandas' has no attribute 'getdummies'
解决方案
错误原因是pd.getdummies()的函数名不正确。 正确的函数名称是 pd.get_dummies()。 请修改如下:
# 虚拟变量
df = integrated_data
integrated_data = pd.get_dummies(df, drop_first=True)
现在可以将定量转换为虚拟变量。
仅将特定列转换为虚拟变量
如果只想将数据框integrated_data的特定列类型转换为虚拟变量,请修改代码如下所示。
# 虚拟变量
type_dummies = pd.get_dummies(integrated_data['Type'], prefix='Type', drop_first=True)
# 将虚拟变量合并到原始数据框中
integrated_data = pd.concat([integrated_data.drop('Type', axis=1), type_dummies], axis=1)
此代码首先为 Type 列创建一个虚拟变量并将其存储在 type_dummies 中。 接下来,我们从原始数据框中删除 Type 列,并将 type_dummies 连接到原始数据框中。 这将仅对类型列执行虚拟变量化。
这是关于如何在 Python 中将特定列转换为虚拟变量的说明。 通过使用这种方法,您可以将特定的定性变量转化为虚拟变量并使用它们进行分析。