前缀和取余

k 倍区间

题目描述

给定一个长度为 NNN 的数列,A1,A2,⋯ANA_1,A_2, \cdots A_NA1,A2,AN,如果其中一段连续的子序列 Ai,Ai+1,⋯Aj(i≤j)A_i,A_{i+1}, \cdots A_j(i \le j)Ai,Ai+1,Aj(ij) 之和是 KKK 的倍数,我们就称这个区间 [i,j][i,j][i,j]KKK 倍区间。

你能求出数列中总共有多少个 KKK 倍区间吗?

输入格式

第一行包含两个整数 NNNKKK(1≤N,K≤105)(1 \le N,K \le 10^5)(1N,K105)

以下 NNN 行每行包含一个整数 AiA_iAi(1≤Ai≤105)(1 \le A_i \le 10^5)(1Ai105)

输出格式

输出一个整数,代表 KKK 倍区间的数目。

样例 1

样例输入 1

5 2
1  
2  
3  
4  
5

样例输出 1

6

前缀和取余

对于求取在数组子段范围内的累计和,是否可以被取余可以使用前缀和取余的思路;

  • 求前缀和过程中,前缀和取余的数字,记录这些余数出现的次数;
  • 再求各个余数出现次数的组合数(即余数相同的前缀和构成的区间必定可以被整除);
  • 还要考虑单个数可以被整除的情况,他们并不构成区间,所以(mp[0]=1要被考虑);
#include<bits/stdc++.h>
using namespace std;
int main(){
    ios::sync_with_stdio(false);
    cout.tie(NULL);cin.tie(NULL);

    int n,k;
    cin>>n>>k;
    int ans=0;
    map<int,int>mp;
    mp[0] = 1;

    for(size_t i=1;i<=n;i++){
        int s;cin>>s;
        ans+=s;
        mp[ans%k]++;
        ans%=k;//不影响ans+s
    }
    ans= 0;
    for(int i=0;i<k;i++){
        ans+=(mp[i]-1)*mp[i]/2;
    }
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值