2022年全国职业院校技能大赛 高职组 “大数据技术与应用” 赛项赛卷(7卷)任务书

背景描述:

大数据时代背景下,电商经营模式发生很大改变。在传统运营模式中,缺乏数据积累,人们在做出一些决策行为过程中,更多是凭借个人经验和直觉,发展路径比较自我封闭。而大数据时代,为人们提供一种全新的思路,通过大量的数据分析得出的结果将更加现实和准确。商家可以对客户的消费行为信息数据进行收集和整理,比如消费者购买产品的花费、选择产品的渠道、偏好产品的类型、产品回购周期、购买产品的目的、消费者家庭背景、工作和生活环境、个人消费观和价值观等。通过数据追踪,知道顾客从哪儿来,是看了某网站投放的广告还是通过朋友推荐链接,是新访客还是老用户,喜欢浏览什么产品,购物车有无商品,是否清空,还有每一笔交易记录,精准锁定一定年龄、收入、对产品有兴趣的顾客,对顾客进行分组、标签化,通过不同标签组合运用,获得不同目标群体,以此开展精准推送。
因数据驱动的零售新时代已经到来,没有大数据,我们无法为消费者提供这些体验,为完成电商的大数据分析工作,你所在的小组将应用大数据技术,以Scala作为整个项目的基础开发语言,基于大数据平台综合利用Hudi、Spark、Flink、Vue.js等技术,对数据进行处理、分析及可视化呈现,你们作为该小组的技术人员,请按照下面任务完成本次工作。

模块A:大数据平台搭建(容器环境)(15分)

环境说明:
服务端登录地址详见各模块服务端说明。
补充说明:宿主机可通过Asbru工具或SSH客户端进行SSH访问;
相关软件安装包在宿主机的/opt目录下,请选择对应的安装包进行安装,用不到的可忽略;
所有模块中应用命令必须采用绝对路径;
从本地仓库中拉取镜像,并启动3个容器
进入Master节点的方式为
docker exec –it master /bin/bash
进入Slave1节点的方式为
docker exec –it slave1 /bin/bash
进入Slave2节点的方式为
docker exec –it slave2 /bin/bash
同时将/opt目录下的所有安装包移动到3个容器节点中。

任务一:Hadoop 完全分布式安装配置

本环节需要使用root用户完成相关配置,安装Hadoop需要配置前置环境。命令中要求使用绝对路径,具体要求如下:
1、将Master节点JDK安装包解压并移动到/usr/java路径(若路径不存在,则需新建),将命令复制并粘贴至对应报告中;
2、修改/root/profile文件,设置JDK环境变量,配置完毕后在Master节点分别执行“java”和“javac”命令,将命令行执行结果分别截图并粘贴至对应报告中;
3、请完成host相关配置,将三个节点分别命名为master、slave1、slave2,并做免密登录,使用绝对路径从Master复制JDK解压后的安装文件到Slave1、Slave2节点,并配置相关环境变量,将全部复制命令复制并粘贴至对应报告中;
4、在Master节点将Hadoop解压到/opt目录下,并将解压包分发至Slave1、Slave2中,配置好相关环境,初始化Hadoop环境namenode,将初始化命令及初始化结果复制粘贴至对应报告中;
5、启动Hadoop集群,查看Master节点jps进程,将查看结果复制粘贴至对应报告中。

任务二:Flume安装配置

本环节需要使用root用户完成相关配置,已安装Hadoop及需要配置前置环境,具体要求如下:
1、设置Flume环境变量,并使环境变量只对当前root用户生效,将变量内容复制并粘贴至对应报告中;
2、修改并配置flume-env.sh文件,将修改内容复制并粘贴至对应报告中;
3、复制Flume启动的配置文件flume-conf.properties.template并命名为conf-file,修改其中内容,监控Hadoop的namenode日志,传输到HDFS的是/tmp/flume目录,将conf-file中的修改内容复制并粘贴至对应报告中;
4、启动Flume传输Hadoop日志,查看HDFS中/tmp/flume目录下生成的文件,将查看命令及结果(至少10条结果)复制并粘贴至对应报告中。

任务三:ZooKeeper安装配置

本环节需要使用root用户完成相关配置,已安装Hadoop及需要配置前置环境,具体要求如下:
1、在Master节点解压ZooKeeper安装包到/opt目录下;
2、设置ZOOKEEPER_HOME环境变量,并使环境变量只对当前用户生效,将环境变量内容复制粘贴至对应报告中;
3、配置“zoo.cfg”配置文件,将dataDir配置为/tmp/zookeeper,将文件变更内容复制粘贴至对应报告中;
4、启动每个虚拟机上的Zookeeper节点,启动完成之后查看Master节点的zkServer服务状态,将查看命令及结果复制粘贴至对应报告中。

模块B:离线数据处理(25分)

环境说明:
服务端登录地址详见各模块服务端说明。
补充说明:各主机可通过Asbru工具或SSH客户端进行SSH访问;
Master节点MySQL数据库用户名/密码:root/123456(已配置远程连接);
Hive的元数据启动命令为:
nohup hive --service metastore &
Hive的配置文件位于/opt/apache-hive-2.3.4-bin/conf/
Spark任务在Yarn上用Client运行,方便观察日志。

任务一:数据抽取

编写Scala工程代码,将MySQL库中表ChangeRecord,Basemachine,MachineData, ProduceRecord全量抽取到Hive的ods库中对应表ChangeRecord,Basemachine, MachineData, ProduceRecord中。
1、抽取MySQL的shtd_store库中ChangeRecord表的全量数据进入Hive的ods库中表ChangeRecord,字段排序、类型不变,同时添加静态分区,分区字段类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。并在hive cli执行show partitions ods.ChangeRecord命令,将结果截图复制粘贴至对应报告中;
2、抽取MySQL的shtd_store库中Basemachine表的全量数据进入Hive的ods库中表Basemachine,字段排序、类型不变,同时添加静态分区,分区字段类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。并在hive cli执行show partitions ods.Basemachine命令,将结果截图复制粘贴至对应报告中;
3、抽取MySQL的shtd_store库中ProduceRecord表的全量数据进入Hive的ods库中表ProduceRecord,字段排序、类型不变,同时添加静态分区,分区字段类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。并在hive cli执行show partitions ods.ProduceRecord命令,将结果截图复制粘贴至对应报告中;
4、抽取MySQL的shtd_store库中MachineData表的全量数据进入Hive的ods库中表MachineData,字段排序、类型不变,同时添加静态分区,分区字段类型为String,且值为当前比赛日的前一天日期(分区字段格式为yyyyMMdd)。并在hive cli执行show partitions ods.ProduceRecord命令,将结果截图复制粘贴至对应报告中。

任务二:数据清洗

编写Scala工程代码,将ods库中相应表数据全量抽取到Hive的dwd库中对应表中。表中有涉及到timestamp类型的,均要求按照yyyy-MM-dd HH:mm:ss,不记录毫秒数,若原数据中只有年月日,则在时分秒的位置添加00:00:00,添加之后使其符合yyyy-MM-dd HH:mm:ss。
1、抽取ods库中ChangeRecord的全量数据进入Hive的dwd库中表fact_change_record,分区字段为etldate且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写操作时间,并进行数据类型转换。并在hive cli执行desc dwd.fact_change_record命令,将结果内容复制粘贴至对应报告中;
2、抽取ods库中Basemachine的全量数据进入Hive的dwd库中表dim_machine,抽取数据之前需要对数据根据BaseMachineID进行去重处理。分区字段为etldate且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写操作时间,并进行数据类型转换。在hive cli中按照Base_machine顺序排序,查询dim_machine前2条数据,将结果内容复制粘贴至对应报告中;
3、抽取ods库中ProduceRecord的全量数据进入Hive的dwd库中表fact_produce_record,分区字段为etldate且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写操作时间,并进行数据类型转换。在hive cli中按照produce_machine_id顺序排序,查询fact_produce_record前2条数据,将结果内容复制粘贴至对应报告中;
4、抽取ods库中MachineData的全量数据进入Hive的dwd库中表fact_machine_data。分区字段为etldate且值与ods库的相对应表该值相等,并添加dwd_insert_user、dwd_insert_time、dwd_modify_user、dwd_modify_time四列,其中dwd_insert_user、dwd_modify_user均填写“user1”,dwd_insert_time、dwd_modify_time均填写操作时间,并进行数据类型转换。并在hive cli执行show partitions dwd. fact_machine_data命令,将结果内容复制粘贴至对应报告中。

任务三:指标计算

1、编写Scala工程代码,根据dwd层MachineData表关联BaseMachine表统计每个车间中设备运行时长(即设备状态为“运行”)的中位数,存入MySQL数据库shtd_store的表MachineRunningMedian(表结构如下)中,然后在Linux的MySQL命令行中根据所属车间、设备id均为倒序排序,查询出前5条数据,将SQL语句与执行结果截图粘贴至对应报告中;
字段 类型 中文含义 备注
MachineID int 设备id
MachineFactory int 所属车间
TotalRunningTime int 运行总时长 结果以秒为单位

2、编写Scala工程代码,根据dwd层表统计在2021年,每个车间设备每月平均运行时长与公司所有设备每月平均运行时长(结果值为:高/低/相同),存入MySQL数据库shtd_store的表MachineRunningCompare(表结构如下)中,然后在Linux的MySQL命令行中根据月份和车间号倒序排序,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中;

在这里插入图片描述
2、编写Scala工程代码,根据dwd层表统计在2021年,每个车间设备每月平均运行时长与公司所有设备每月平均运行时长(结果值为:高/低/相同),存入MySQL数据库shtd_store的表MachineRunningCompare(表结构如下)中,然后在Linux的MySQL命令行中根据月份和车间号倒序排序,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中;

在这里插入图片描述
3、编写Scala工程代码,根据dwd层表展示每一个设备最近第二次的状态(倒数第二次),如果设备仅有一种状态,返回该状态(一个设备不会同时拥有两种状态),存入MySQL数据库shtd_store的表RecentState(表结构如下)中,然后在Linux的MySQL命令行中根据设备id进行倒序排序,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中。

在这里插入图片描述

模块C:数据挖掘(10分)

环境说明:
服务端登录地址详见各模块服务端说明。
补充说明:各主机可通过Asbru工具或SSH客户端进行SSH访问;
Master节点MySQL数据库用户名/密码:root/123456(已配置远程连接);
Hive的元数据启动命令为:
nohup hive --service metastore &
Hive的配置文件位于/opt/apache-hive-2.3.4-bin/conf/
Spark任务在Yarn上用Client运行,方便观察日志。
该模块均使用Scala编写,利用Spark相关库完成。

任务一:特征工程

1、根据dwd库中fact_machine_data表,根据以下要求转换: 获取最大分区的数据后,首先解析列get_xmldata中的数据(数据格式为xml,采用dom4j解析,会给出解析demo),并获取 主轴转速,主轴倍率,主轴负载,进给倍率,进给速度,PMC程序号,循环时间,运行时间,有效轴数,总加工个数,已使用内存,未使用内存,可用程序量,注册程序量等相关的值,同时转换machine_record_stat字段的值,若值为报警,则填写1,否则填写0,以下为表结构,将数据保存在dwd.fact_machine_learning_data,在hive cli中按照machine_record_id顺序排序,查询dwd.fact_machine_learning_data前1条数据,将结果内容复制粘贴至对应报告中。
dwd.fact_machine_learning_data表结构:

在这里插入图片描述

任务二:报警预测

1、根据任务一的结果,建立随机森林(随机森林相关参数考生可自定义,不做限制),使用任务一的结果训练随机森林模型,然后再将hive中dwd.fact_machine_learning_data_test(表结构与dwd.fact_machine_learning_data一致,但machine_record_state列值为空)转成向量,预测其是否报警将结果输出到MySQL库shtd_industry中的ml_result表中。在Linux的MySQL命令行中查询出所有数据并按照machine_record_id顺序排序,将SQL语句与执行结果截图粘贴至对应报告中。
ml_result表结构:

在这里插入图片描述

模块D:数据采集与实时计算(20分)

环境说明:
服务端登录地址详见各模块服务端说明。
补充说明:各主机可通过Asbru工具或SSH客户端进行SSH访问;
请先检查ZooKeeper、Kafka、Redis端口看是否已启动,若未启动则各启动命令如下:
ZK启动(netstat -ntlp查看2181端口是否打开)
/usr/zk/zookeeper-3.4.6/bin/zkServer.sh start
Redis启动(netstat -ntlp查看6379端口是否打开)
/usr/redis/bin/redis-server /usr/redis/bin/redis.conf
Kafka启动(netstat -ntlp查看9092端口是否打开)
/opt/kafka/kafka_2.11-2.0.0/bin/kafka-server-start.sh -daemon(空格连接下一行)/opt/kafka/kafka_2.11-2.0.0/config/server.properties
Flink任务在Yarn上用per job模式(即Job分离模式,不采用Session模式),方便Yarn回收资源。

任务一:实时数据采集

1、在Master节点使用Flume采集/data_log目录下实时日志文件中的数据,将数据存入到Kafka的Topic中(topic名称分别为ChangeRecord和ProduceRecord,分区数为4),将Flume的配置截图粘贴至对应报告中;
2、Flume接收数据注入Kafka 的同时,将数据备份到HDFS目录/user/test/flumebackup下,将备份结果截图粘贴至对应报告中。

任务二:使用Flink处理Kafka中的数据

编写Scala工程代码,使用Flink消费Kafka中Topic为ChangeRecord的数据并进行相应的数据统计计算。
1、使用Flink消费Kafka中ProduceRecord主题的数据,统计在已经检验的产品中,各设备每小时生产产品总数,将key设置成totalproduce存入Redis中(再使用hash数据格式,key存放为设备id,value存放为该设备生产总数),使用redis cli以get key方式获取totalproduce值,将结果截图粘贴至对应报告中,需两次截图,第一次截图和第二次截图间隔一分钟以上,第一次截图放前面,第二次放后面。
2、使用Flink消费Kafka中ChangeRecord主题的数据,统计每个设备从其他状态转变为“运行”状态的总次数,将key设置成totalswitch存入Redis中(再使用hash数据格式,key存放为设备id,value存放为该设备切换为“运行”的总次数),使用redis cli以get key方式获取totalswitch值,将结果截图粘贴至对应报告中,需要两次截图,第一次截图放前面,第二次放后面;
3、使用Flink消费Kafka中ChangeRecord主题的数据,统计每个设备状态信息,当某设备的状态在24小时内连续三小时为“预警”状态没有改变,则将该设备的状态数据写入MySql表recordstatealarm中,然后在Linux的MySQL命令行中根据MachineID逆序排序,查询出前3条,将SQL语句与执行结果截图粘贴至对应报告中。

模块E:数据可视化(15分)

环境说明:
数据接口地址及接口描述详见各模块服务端说明。

任务一:用饼状图展示某设备当天各状态时间

编写Vue工程代码,根据接口,用饼状图展示某日该设备的各个状态的运行时长占比,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。

任务二:用柱状图展示各车间设备每月平均运行时长

编写Vue工程代码,根据接口,用柱状图展示各车间设备每月平均运行时长,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。

任务三:用折线图展示机器运行时长

编写Vue工程代码,根据接口,用折线图展示某机器在某一周的运行时长,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。

任务四:用散点图展示PM2.5浓度变化

编写Vue工程代码,根据接口,用散点图展示设备所处环境的PM2.5浓度的变化,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。

任务五:用折柱混合图展示机器日均产量和车间日均产量

编写Vue工程代码,根据接口,用折柱混合图展示某机器在某月的日均产量和车间的日均产量,其中柱状图展示各机器的日均产量,折线图展示该机器所在车间的日均产量,同时将用于图表展示的数据结构在浏览器的console中进行打印输出,将图表可视化结果和浏览器console打印结果分别截图并粘贴至对应报告中。

模块F:综合分析(10分)

任务一:Hive分区表作用

Hive分区表的作用是什么,是否越多越好,为什么?将内容编写至对应报告中。

任务二:如何解决数据倾斜问题

当使用spark产生了数据倾斜的情况时,请问有哪些方法可以解决这个问题呢?将内容编写至对应报告中。

任务三:简要描述任务过程中的问题并进行总结

将内容编写至对应报告中。

需要培训私信博主,资源环境也可以(包拿奖)!!

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

落寞的魚丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值