python实例(六)Numpy实现加减乘除

本文介绍了如何使用Numpy库进行加、减、乘、除等基本数值运算,通过实例展示其简单高效的运算能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

命题

实现加减乘除运算

思路

利用现成的numpy库

import numpy as np
#输入两个数
x=int(input("the fist number: "))
y=int(input("the second number: "))
#选择相应运算
pr
### Python NumPy 软件包功能与使用教程 NumPyPython 中用于科学计算的核心之一,提供了多维数组对象及其派生的对象集合,其中包括掩码数组和矩阵。它还支持大量的数学函数操作这些数组。 #### 1. **核心功能** NumPy 的主要功能围绕其 `ndarray` 对象展开,这是一种高效的 n 维数组结构[^1]。以下是它的几个重要特性: - 高效处理大规模数据集的能力。 - 提供丰富的数学运算方法,如线性代数、傅里叶变换等。 - 支持广播机制(Broadcasting),使得不同形状的数组可以进行算术运算。 #### 2. **安装方式** 可以通过国内镜像源快速安装 NumPy 。例如,在命令行输入以下内容即可完成安装: ```bash pip3 install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 如果遇到权限问题或者环境变量未设置的情况,则需确认系统的 PATH 变量已正确添加 Python 安装目录及 Scripts 子目录;例如:`;F:\Python34;F:\Python34\Scripts;`[^2]。 #### 3. **基本用法示例** ##### 创建数组 创建一维或多维数组是最常见的任务之一。下面是一些简单的例子来展示如何构建不同的数组形式。 ```python import numpy as np # 创建一维数组 arr_1d = np.array([1, 2, 3]) print("One-dimensional array:", arr_1d) # 创建二维数组 arr_2d = np.array([[1, 2], [3, 4]]) print("Two-dimensional array:\n", arr_2d) ``` ##### 数组属性访问 通过 `.shape`, `.dtype`, 和其他成员变量可以获得关于该数组的重要信息。 ```python print("Shape of the two-dimensional array:", arr_2d.shape) # 输出 (2, 2) print("Data type of elements in one-dimensional array:", arr_1d.dtype.name) # 输出 'int64' ``` ##### 基本索引与切片 类似于列表的操作符可用于选取子集或特定位置的数据项。 ```python element = arr_1d[0] # 获取第一个元素 sub_array = arr_2d[:1, :] # 切取前一行的所有列 print(element, sub_array) ``` ##### 广播(Broadcasting)应用实例 即使两个数组维度不完全匹配也可以执行加减乘除之类的二元运算。 ```python scalar_addition = arr_1d + 5 # 将常数值加上每一个元素 matrix_multiplication = arr_2d * 2 # 各自成分相乘得到新矩阵 print(scalar_addition, matrix_multiplication) ``` #### 4. **高级主题概览** 除了上述基础外,还有更多深入的内容值得探索,比如随机数生成器模块 (`np.random`) ,文件读写工具(`np.save()`, `np.load()`), 还有专门针对统计分析设计的方法等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值