逆元是什么以及为什么要使用逆元
逆元的作用:在模意义下做乘法的逆运算。
在实数运算中,除以一个数,等于乘上这个数的倒数。而现在在模意义下,逆元就充当了“倒数”的角色,模意义下乘上逆元就相当于除以了一个数。
逆元定义:如果一个线性同余方程 a x ≡ 1 ( m o d b ) ax \equiv 1 \pmod b ax≡1(modb),则 x x x 称为 a m o d b a \bmod b amodb 的逆元,记作 a − 1 a^{-1} a−1。所以求逆元实际上就是求如下方程的解:
a x ≡ 1 ( m o d p ) ax \equiv 1 \pmod p ax≡1(modp)
费马小定理求逆元
费马小定理
若 p p p 为素数,且 gcd ( a , p ) = 1 \gcd(a, p) = 1 gcd(a,p)=1,即 a , p a, p a,p 互质,那么 a p − 1 ≡ 1 ( m o d p ) a^{p-1} \equiv 1 \pmod p ap−1≡1(modp)。
如何用于求逆元
当 p p p 是质数时,
∵ a p − 1 ≡ 1 ( m o d p ) \because a^{p-1} \equiv 1 \pmod p ∵ap−1≡1(modp)
∴ a ⋅ a p − 2 ≡ 1 ( m o d p ) \therefore a \cdot a^{p-2} \equiv 1 \pmod p ∴a⋅ap−2≡1(modp)
∴ x = a p − 2 m o d p \therefore x = a^{p-2} \bmod p ∴x=ap−2modp
用个快速幂就结束了。
注意限制条件: p p p 必须是质数。
但是大多数情况下OI题目中的模数都是质数,所以这一方法很常用。
时间复杂度 O ( log p ) O(\log p) O(logp)。
欧拉定理求逆元
欧拉函数
欧拉函数 φ ( x ) \varphi(x) φ(x) 的定义:小于等于 x x x 的数中与 x x x 互质的数的个数。
如何求欧拉函数:
φ ( x ) = ( ∏ i = 1 k p i − 1 p i ) x \varphi(x) = (\prod_{i=1}^k \dfrac{p_i-1}{p_i}) x φ(x)=(i=1∏kpipi−1)x
其中 k k k 是 x x x 中的质因子个数, p i p_i pi 是 x x x 的一个质因子。注意,这里忽略质因数分解中的次数,如
20 = 2 2 × 5 20 = 2^2 \times 5 20=22×