=
大家有没有发现,让ChatGPT写个简单文案很棒,但一旦任务复杂起来就不行了?
比如让它"分析20家科技公司并给出投资建议",它要么回答太浅显,要么逻辑混乱,要么信息过时。根本原因是:一个人再厉害,也干不过专业团队。
AI也是如此。单个大模型就像"万能型员工",什么都会一点,但什么都不精通。
那怎么办?答案是:多智能体系统 - 让多个专业AI协作,就像组建一个专家团队。
一、多智能体(Multi-Agent)
一个故事说清楚:什么是多智能体?
老板给你一个任务:“帮我分析特斯拉是否值得投资,明天要用。”
你慌了,这活儿太复杂:要查财报、分析行业、对比竞品、写报告…
(1)方案A:你一个人干晚上12点了,你还在电脑前。
- 刚查完特斯拉财报,眼睛都花了
- 还得分析汽车行业趋势,头都大了
- 写报告?已经没脑子了,随便写几句
- 检查质量?算了,没时间了
结果:累死你,报告还不一定靠谱。
(2)方案B:组建团队,你找来4个同事。
- 小李(研究员):专门收集数据,他对信息搜索特别在行
- 小王(分析师):专门分析数据,财务建模是他强项
- 小张(写手):专门写报告,文笔一流
- 老刘(审核员):专门挑毛病,质量把控严格
分工明确,各司其职,2小时搞定高质量报告。
多智能体系统就是方案B的AI版本:让多个专业AI协作,而不是让一个AI包办一切。
多智能体的三个核心秘密是什么?
听起来简单,但要真正搞懂多智能体,你需要掌握三个核心秘密。
- 角色分工 - 让每个AI专精一个领域,越专业效果越好
- 任务流转 - 设计清晰的信息传递流程,上一步的输出是下一步的输入
- 协调机制 - 有统一的"项目经理"负责任务分配、进度控制和质量把关
秘密1:角色分工(Role Division)
每个AI都有专门的"人设"和技能点
传统单体AI:万金油
用户:分析特斯拉投资价值
多智能体:专业分工
研究员AI:
关键洞察:专业的人做专业的事,效果比万能选手好10倍。
秘密2:任务流转(Task Flow)
信息像流水线一样有序传递
一个完整的任务流转过程:
用户输入:分析特斯拉投资价值
关键洞察:每一步的输出都是下一步的精准输入,没有信息浪费。
秘密3:协调机制(Coordination)
有个"项目经理"统筹全局
协调机制包含三个核心功能:
1. 任务分配
项目经理AI:
2. 进度控制
第10分钟:研究员完成60%,按计划进行
3. 质量把关
每个环节完成后自动检查:
关键洞察:有人管全局,才不会乱套。协调机制是多智能体的大脑。
二、OpenManus架构
多智能体OpenManus的架构是什么?
OpenManus通过"分层继承 + 双模式执行 + 工具生态"的架构设计,实现了既简单又强大的多智能体系统,特别适合需要灵活扩展和快速部署的AI智能体应用场景。
1. 智能体层(Agent Layer)- OpenManus的分层智能体设计
OpenManus通过分层继承架构实现智能体的专业化分工,从BaseAgent到专业智能体的渐进式设计确保了每个AI"员工"都有明确的角色定位和工具调用能力,同时保持统一的接口标准便于系统集成。
- 分层继承设计:采用分层架构设计,从基础智能体到专业智能体,确保高代码复用性、强扩展性和清晰的职责分离
- ReAct模式集成:ReActAgent实现think-act-observe循环模式 ,每个智能体都具备思考-行动-观察的能力
- 工具调用抽象:ToolCallAgent处理工具/函数调用的抽象,包括工具选择、参数解析、结果处理和错误处理机制。
- 统一接口标准:所有智能体都继承自BaseAgent,保证调用接口的一致性
2. 流程控制层(Workflow Layer)- 双模式编排系统
OpenManus通过双模式执行架构和PlanningFlow实现智能化项目管理,从LLM生成结构化计划到状态机式执行跟踪,确保多智能体任务能够有序协调、容错执行并达成最终目标。
- 双执行模式:提供直接智能体执行模式(main.py)和流程编排执行模式(run_flow.py),适应不同复杂度任务。
- 结构化计划管理:PlanningAgent负责基于用户输入创建结构化计划、记录每个步骤的执行状态、自动标记当前活动步骤并更新完成状态。
- 状态机式执行:通过清晰的状态转换管理执行流程,确保每个步骤都能正确完成或优雅失败。
- 智能体协调机制:ManusAgent.py负责管理整个协作流程,实现多智能体间的任务分配和结果汇聚。
3. 数据传递层(Data Flow Layer)- 工具生态与数据标准化
OpenManus通过统一工具接口和丰富工具生态构建标准化数据流水线,实现智能体间以及与外部系统间的无缝数据传递和工具调用。
- 丰富的工具生态:内置Python执行、浏览器交互、搜索等工具,满足多样化任务需求。
- 统一工具接口:ToolCallAgent决定使用哪些工具完成任务、处理JSON格式的工具参数、格式化工具执行结果。
- 内存式计划存储:PlanningTool使用内存存储计划,适合简单用例但对更复杂场景可能不够可扩展。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发