Motivation:
在语义角色标注(SRL)的任务上,传统使用神经网络的做法是将解析树作为神经网络的输入。最近一种比较流行的做法是使用端到端的神经网络模型,直接将源句子转化为论元标签,省去生成解析树的步骤。本文采用的就是端到端的方法,将SRL任务转化为一个序列标注问题。
模型结构:
为实现SRL,从源句子到目标序列一共分为两部分:
- Highway LSTM+Softmax:输入为<句子单词,谓词>,输出为每个标签对应的概率p(yi | x)。
&nb