语义角色标注《Deep Semantic Role Labeling?What Works and What’s Next》

Motivation:

在语义角色标注(SRL)的任务上,传统使用神经网络的做法是将解析树作为神经网络的输入。最近一种比较流行的做法是使用端到端的神经网络模型,直接将源句子转化为论元标签,省去生成解析树的步骤。本文采用的就是端到端的方法,将SRL任务转化为一个序列标注问题。

 

模型结构:

为实现SRL,从源句子到目标序列一共分为两部分:

  1. Highway LSTM+Softmax:输入为<句子单词,谓词>,输出为每个标签对应的概率p(yi | x)。

                               

                                                              &nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值