大数C++板子

本文介绍了一个自定义的大数类实现,该类能够处理长度达到4000位的大数运算,并提供了完整的算术操作符重载。此外,通过实例演示了如何使用这个大数类来解决一个具体的几何问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个板子可以解决长度为4000之内的大数之间的运算, 并且把所有会用到的运算都加进去了, 但是总的来说, 感觉抄板子都要找很久, 而且可能抄错, 所以比赛的时候可能还是会用其他语言写题吧, 这个还是保存着.

这道题是以 HDU 6206

#include <cmath>
#include <map>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <set>
#include <bitset>
#include <memory.h>
#include <functional>
#include <queue>
#include <fstream>
#include <ctime>
#include <deque>
#include <utility>
#include <stack>
#include <sstream>
#include <list>
#include <cctype> 
#include <numeric>
#include <iomanip>
#include <assert.h>
#define EPS 1e-8
using namespace std;
const int maxn = 550;
typedef long long LL;

#define MAX_L 2005 

class bign
{
public:
    int len, s[MAX_L];
    bign();
    bign(const char*);
    bign(int);
    bool sign;
    string toStr() const;
    friend istream& operator>>(istream &,bign &);
    friend ostream& operator<<(ostream &,bign &);
    bign operator=(const char*);
    bign operator=(int);
    bign operator=(const string);
    bool operator>(const bign &) const;
    bool operator>=(const bign &) const;
    bool operator<(const bign &) const;
    bool operator<=(const bign &) const;
    bool operator==(const bign &) const;
    bool operator!=(const bign &) const;
    bign operator+(const bign &) const;
    bign operator++();
    bign operator++(int);
    bign operator+=(const bign&);
    bign operator-(const bign &) const;
    bign operator--();
    bign operator--(int);
    bign operator-=(const bign&);
    bign operator*(const bign &)const;
    bign operator*(const int num)const;
    bign operator*=(const bign&);
    bign operator/(const bign&)const;
    bign operator/=(const bign&);
    bign operator%(const bign&)const;
    bign factorial()const;
    bign Sqrt()const;
    bign pow(const bign&)const;
    void clean();
    ~bign();
};
#define max(a,b) a>b ? a : b
#define min(a,b) a<b ? a : b

bign::bign()
{
    memset(s, 0, sizeof(s));
    len = 1;
    sign = 1;
}

bign::bign(const char *num)
{
    *this = num;
}

bign::bign(int num)
{
    *this = num;
}

string bign::toStr() const
{
    string res;
    res = "";
    for (int i = 0; i < len; i++)
        res = (char)(s[i] + '0') + res;
    if (res == "")
        res = "0";
    if (!sign&&res != "0")
        res = "-" + res;
    return res;
}

istream &operator>>(istream &in, bign &num)
{
    string str;
    in>>str;
    num=str;
    return in;
}

ostream &operator<<(ostream &out, bign &num)
{
    out<<num.toStr();
    return out;
}

bign bign::operator=(const char *num)
{
    memset(s, 0, sizeof(s));
    char a[MAX_L] = "";
    if (num[0] != '-')
        strcpy(a, num);
    else
        for (int i = 1; i < strlen(num); i++)
            a[i - 1] = num[i];
    sign = !(num[0] == '-');
    len = strlen(a);
    for (int i = 0; i < strlen(a); i++)
        s[i] = a[len - i - 1] - 48;
    return *this;
}

bign bign::operator=(int num)
{
    char temp[MAX_L];
    sprintf(temp, "%d", num);
    *this = temp;
    return *this;
}

bign bign::operator=(const string num)
{
    const char *tmp;
    tmp = num.c_str();
    *this = tmp;
    return *this;
}

bool bign::operator<(const bign &num) const
{
    if (sign^num.sign)
        return num.sign;
    if (len != num.len)
        return len < num.len;
    for (int i = len - 1; i >= 0; i--)
        if (s[i] != num.s[i])
            return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
    return !sign;
}

bool bign::operator>(const bign&num)const
{
    return num < *this;
}

bool bign::operator<=(const bign&num)const
{
    return !(*this>num);
}

bool bign::operator>=(const bign&num)const
{
    return !(*this<num);
}

bool bign::operator!=(const bign&num)const
{
    return *this > num || *this < num;
}

bool bign::operator==(const bign&num)const
{
    return !(num != *this);
}

bign bign::operator+(const bign &num) const
{
    if (sign^num.sign)
    {
        bign tmp = sign ? num : *this;
        tmp.sign = 1;
        return sign ? *this - tmp : num - tmp;
    }
    bign result;
    result.len = 0;
    int temp = 0;
    for (int i = 0; temp || i < (max(len, num.len)); i++)
    {
        int t = s[i] + num.s[i] + temp;
        result.s[result.len++] = t % 10;
        temp = t / 10;
    }
    result.sign = sign;
    return result;
}

bign bign::operator++()
{
    *this = *this + 1;
    return *this;
}

bign bign::operator++(int)
{
    bign old = *this;
    ++(*this);
    return old;
}

bign bign::operator+=(const bign &num)
{
    *this = *this + num;
    return *this;
}

bign bign::operator-(const bign &num) const
{
    bign b=num,a=*this;
    if (!num.sign && !sign)
    {
        b.sign=1;
        a.sign=1;
        return b-a;
    }
    if (!b.sign)
    {
        b.sign=1;
        return a+b;
    }
    if (!a.sign)
    {
        a.sign=1;
        b=bign(0)-(a+b);
        return b;
    }
    if (a<b)
    {
        bign c=(b-a);
        c.sign=false;
        return c;
    }
    bign result;
    result.len = 0;
    for (int i = 0, g = 0; i < a.len; i++)
    {
        int x = a.s[i] - g;
        if (i < b.len) x -= b.s[i];
        if (x >= 0) g = 0;
        else
        {
            g = 1;
            x += 10;
        }
        result.s[result.len++] = x;
    }
    result.clean();
    return result;
}

bign bign::operator * (const bign &num)const
{
    bign result;
    result.len = len + num.len;

    for (int i = 0; i < len; i++)
        for (int j = 0; j < num.len; j++)
            result.s[i + j] += s[i] * num.s[j];

    for (int i = 0; i < result.len; i++)
    {
        result.s[i + 1] += result.s[i] / 10;
        result.s[i] %= 10;
    }
    result.clean();
    result.sign = !(sign^num.sign);
    return result;
}

bign bign::operator*(const int num)const
{
    bign x = num;
    bign z = *this;
    return x*z;
}
bign bign::operator*=(const bign&num)
{
    *this = *this * num;
    return *this;
}

bign bign::operator /(const bign&num)const
{
    bign ans;
    ans.len = len - num.len + 1;
    if (ans.len < 0)
    {
        ans.len = 1;
        return ans;
    }

    bign divisor = *this, divid = num;
    divisor.sign = divid.sign = 1;
    int k = ans.len - 1;
    int j = len - 1;
    while (k >= 0)
    {
        while (divisor.s[j] == 0) j--;
        if (k > j) k = j;
        char z[MAX_L];
        memset(z, 0, sizeof(z));
        for (int i = j; i >= k; i--)
            z[j - i] = divisor.s[i] + '0';
        bign dividend = z;
        if (dividend < divid) { k--; continue; }
        int key = 0;
        while (divid*key <= dividend) key++;
        key--;
        ans.s[k] = key;
        bign temp = divid*key;
        for (int i = 0; i < k; i++)
            temp = temp * 10;
        divisor = divisor - temp;
        k--;
    }
    ans.clean();
    ans.sign = !(sign^num.sign);
    return ans;
}

bign bign::operator/=(const bign&num)
{
    *this = *this / num;
    return *this;
}

bign bign::operator%(const bign& num)const
{
    bign a = *this, b = num;
    a.sign = b.sign = 1;
    bign result, temp = a / b*b;
    result = a - temp;
    result.sign = sign;
    return result;
}

bign bign::pow(const bign& num)const
{
    bign result = 1;
    for (bign i = 0; i < num; i++)
        result = result*(*this);
    return result;
}

bign bign::factorial()const
{
    bign result = 1;
    for (bign i = 1; i <= *this; i++)
        result *= i;
    return result;
}

void bign::clean()
{
    if (len == 0) len++;
    while (len > 1 && s[len - 1] == '\0')
        len--;
}

bign bign::Sqrt()const
{
    if(*this<0)return -1;
    if(*this<=1)return *this;
    bign l=0,r=*this,mid;
    while(r-l>1)
    {
        mid=(l+r)/2;
        if(mid*mid>*this)
            r=mid;
        else
            l=mid;
    }
    return l;
}
bign::~bign()
{
}
struct point{
    bign x, y;
};
bign get_distance( point &a,  point &b)
{ 
    return ((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y)); 
}
bign D;
point get_circle_center( point a,  point b,  point c)
{
    point center;
    bign a1 = b.x - a.x;
    bign b1 = b.y - a.y;
    bign c1 = (a1 * a1 + b1 * b1);
    bign a2 = c.x - a.x;
    bign b2 = c.y - a.y;
    bign c2 = (a2 * a2 + b2 * b2);
    bign d = a1 * b2 - a2 * b1;
    D = d * 2;
    center.x = a.x * 2 * d + (c1 * b2 - c2 * b1);
    center.y = a.y * 2 * d + (a1 * c2 - a2 * c1);
    return center;
}
void solve()
{
    point a, b, c, d;
    cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y;
    point o = get_circle_center(a, b, c);
    a.x = a.x * D, a.y = a.y * D, d.x = d.x * D, d.y = d.y * D;
    if (get_distance(o, a) < get_distance(o, d))
        puts("Accepted");
    else
        puts("Rejected");
}
int main()
{
    int test;
    scanf("%d", &test);
    for (int i = 0; i < test; ++i)
        solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值