基础数据结构详解
1. 算法选择与数据结构的重要性
在解决计算问题时,通常有多种算法可供选择。影响算法选择的因素主要有两个:时间复杂度和实现难度,其中时间复杂度更为关键。例如,对于图上的某个问题,即使知道它可以用多项式时间复杂度的算法解决,但使用时间复杂度为 $O(N^2)$ 的算法和 $O(N^3)$ 的算法,在求解所需时间上会有显著差异。
算法的效率往往取决于输入数据的存储和处理方式,特别是所选择的数据结构。以计算图中所有 $N$ 个节点的度为例,如果图以 $N×N$ 的邻接矩阵存储,计算节点度的简单算法时间复杂度为 $O(N^2)$,因为对于每个节点,都要检查矩阵对应行的 $N$ 个元素是否为 1。而稀疏矩阵表示法可以更高效地计算图的度序列,如在某些情况下时间复杂度为 $O(K)$ 或 $O(N)$。
2. 数组
- 基本概念 :数组是最基本的数据结构,它是一块连续的内存区域,能存储多个相同类型的变量,通常称为数组的组件或元素。数组通过符号名标识,每个组件使用方括号中的整数索引进行寻址。在 C 语言中,长度为 $N$ 的数组,第一个组件索引为 0,最后一个为 $N - 1$。数组可以有多个维度,用于表示矩阵和张量。
- 操作复杂度
- 读取操作 :已知数组中某个组件的位置,读取其值的时间复杂度为 $O(1)$,与数组大小无关。
- 插入和删除操作 :在大小为 $N$ 的数组末尾添加元素或将数组大小减 1 删除元素,平均时