论文笔记: Deep Quantization Network for Efficient Image Retrieval
这篇文章多处与另一篇相似: [Deep Hashing Network for efficient Similarity Retrieval][1].
文章做的事情
(1)构建了一个深度神经网络表达
(2)使用瓶颈网络构建了一个维度降低的哈希码。
(3)用配对损失来构建相似度学习
(4)量化损失用来控制哈希质量。
深度哈希网络
网络模型可以参见[另一篇文章的笔记][1]
这篇文章的网络模型与之前基本相同,作者将fc8层替换成了瓶颈层(bottleneck layer)—— 一个R维度的向量,记为zi8z_i^8zi8,用来表示输入xix_ixi的第八层网络的输出结果,然后使用第八层的激活函数a8(x)=tanh(x)a^8(x) = tanh(x)a8(x)=tanh(x) hyperbolic tangent将函数压缩到[-1, 1]
本文在pair-wise loss与 Quantization Loss稍有区别,见下图
Pairwise Cosine Loss
对于两个二进制编码hi,hjh_i, h_jhi,hj,他们的关系可以用汉明距离来表达distH(hi,hj)=12(B−⟨hi,hj⟩)\operatorname{dist}_{H}\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right)=\frac{1}{2}\left(B-\left\langle\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right\rangle\right)distH(hi,hj)=21(B−⟨hi,hj⟩),所以作者采用內积来取代汉明距离,但是⟨zil,zjl⟩∈[−R,R]\left\langle\boldsymbol{z}_{i}^{l}, \boldsymbol{z}_{j}^{l}\right\rangle \in[-R, R]⟨zil,zjl⟩∈[−R,R]与sij∈{
−1,1}s_{ij} \in \{-1, 1\}sij∈{
−1,1}不一致,所以只能用novel pairwise squared loss。这个损失使用了余弦损失,这个与那篇文章不同
L=∑sij∈S(sij−⟨zil,zjl⟩∥zil∥∥zjl∥)2 L=\sum_{s_{i j} \in \mathcal{S}}\left(s_{i j}-\frac{\left\langle z_{i}^{l}, z_{j}^{l}\right\rangle}{\left\|z_{i}^{l}\right\|\left\|z_{j}^{l}\right\|}\right)^{2} L=sij∈S∑(sij−