论文笔记: Deep quantization Network for Efficienct Image Retrieval

本文探讨了一种深度神经网络方法——Deep Quantization Network,用于生成高效的图像检索哈希码。该网络利用瓶颈层降低维度,并通过配对余弦损失和乘积量化损失来优化哈希码的质量,提高检索准确性。与传统的配对内积损失相比,配对余弦损失在保持向量方向的同时减少了方差。此外,乘积量化损失将高维空间分解为低维子空间进行聚类,进一步提升检索效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记: Deep Quantization Network for Efficient Image Retrieval

这篇文章多处与另一篇相似: [Deep Hashing Network for efficient Similarity Retrieval][1].

文章做的事情

(1)构建了一个深度神经网络表达

(2)使用瓶颈网络构建了一个维度降低的哈希码。

(3)用配对损失来构建相似度学习

(4)量化损失用来控制哈希质量。

深度哈希网络

网络模型可以参见[另一篇文章的笔记][1]

这篇文章的网络模型与之前基本相同,作者将fc8层替换成了瓶颈层(bottleneck layer)—— 一个R维度的向量,记为zi8z_i^8zi8,用来表示输入xix_ixi的第八层网络的输出结果,然后使用第八层的激活函数a8(x)=tanh(x)a^8(x) = tanh(x)a8(x)=tanh(x) hyperbolic tangent将函数压缩到[-1, 1]

本文在pair-wise lossQuantization Loss稍有区别,见下图

在这里插入图片描述

Pairwise Cosine Loss

对于两个二进制编码hi,hjh_i, h_jhi,hj,他们的关系可以用汉明距离来表达dist⁡H(hi,hj)=12(B−⟨hi,hj⟩)\operatorname{dist}_{H}\left(\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right)=\frac{1}{2}\left(B-\left\langle\boldsymbol{h}_{i}, \boldsymbol{h}_{j}\right\rangle\right)distH(hi,hj)=21(Bhi,hj),所以作者采用內积来取代汉明距离,但是⟨zil,zjl⟩∈[−R,R]\left\langle\boldsymbol{z}_{i}^{l}, \boldsymbol{z}_{j}^{l}\right\rangle \in[-R, R]zil,zjl[R,R]sij∈{ −1,1}s_{ij} \in \{-1, 1\}sij{ 1,1}不一致,所以只能用novel pairwise squared loss。这个损失使用了余弦损失,这个与那篇文章不同
L=∑sij∈S(sij−⟨zil,zjl⟩∥zil∥∥zjl∥)2 L=\sum_{s_{i j} \in \mathcal{S}}\left(s_{i j}-\frac{\left\langle z_{i}^{l}, z_{j}^{l}\right\rangle}{\left\|z_{i}^{l}\right\|\left\|z_{j}^{l}\right\|}\right)^{2} L=sijS(sij

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值