AAAI 2021 | 机器翻译最新进展解读

本文概述了AAAI 2021会议上机器翻译领域的最新进展,包括引入语法信息、无监督机器翻译、多语言翻译、语音翻译、领域适应、解码加速技术和非自回归解码等。研究涉及模型优化、性能提升和实际应用,展示了机器翻译在自然语言处理中的持续创新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:李北,王子扬,肖桐

单位:东北大学

机器翻译一直是自然语言处理领域中备受关注的研究方向,从最早期基于规则的机器翻译到如今依托于神经网络端到端的学习语言之间的映射。

目前基于自注意力机制的Transformer模型成为了机器翻译任务的主流模型,在多个公开测试集上取得了最优的翻译性能。研究人员在此基础上根据不同的应用场景及实际需求进行求解,涌现了大量优秀的研究工作。一些技术不仅仅局限于机器翻译任务本身,同样被应用于语言建模,对话,问答,文本摘要等任务,甚至受到了图像、语音领域的广泛关注。

 

在 AAAI2021 上同样涌现了许多关于机器翻译任务的研究工作,几乎所有的工作都是基于Transformer模型展开讨论。这里对机器翻译在AAAI2021上的最新研究进展进行总结:

 

1. 引入语法信息

 

尽管依托于模型本身本文就能从海量数据中捕获到语言之间的映射关系,但研究人员一直在探索如何将句法、语义等先验知识有效地融入到模型中,并指导模型取得进一步的性能突破。传统的做法通常使用外部工具从训练样本中构造句法树等先验知识,之后在编码端、解码端分别融入先验知识。SyntAligner[1]采取一种自监督双语句法对齐方法,让模型在高维空间中对源语-目标语的句法结构进行精确对齐,从而最大限度地利用对齐后的句法结构之间的互信息提高翻译的性能。

 

2. 无监督机器翻译

 

无监督机器翻译同样是机器翻译中备受关注的研究热点。在现实世界中,除了部分富资源语言(如英语,汉语,德语,俄语,印地语等),更多的语言本身受众较小,缺乏海量的双语平行语料进行监督学习。因此,如何在这种资源匮乏,甚至零资源

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值