循环报数游戏,有n个人,每人编号从1开始,依次编号到n。从1到3报数,报3者退出游戏,得出最后获胜人的编号

本文介绍了一个通过编程解决约瑟夫环问题的方法。具体实现中,使用了数组来模拟环形队伍,并以3为基准进行报数。每轮报数后,计数达到3的人会被标记并移除,直至剩下最后一人。该程序最终输出的是在这个游戏中幸存者的编号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

public static int circle(int n){
        int[] arr=new int[n];
        
        for(int i=0;i<arr.length;i++){
            arr[i]=i+1;
        }
        
        int count=0;int src=n;int index=0;
        
        while(n>1) {
            if (arr[index]!= -1) {
                count++;
            }
            if (count == 3) {
                arr[index] = -1;
                count = 0;    //以3循环计数
                n--;
            }
            index = ++index % src;   //保证首尾循环报数
        }
        for(int i=0;i<src;i++){
            if( arr[i]!=-1){
                return arr[i];
            }
        }
        return -1;
    }

    public static void main(String[] args) {
        int a=circle(10);
        System.out.println("最后获胜人的编号是:"+a);
    }

例如:10个人参与游戏,每人编号1-10;
1 2 3 4 5 6 7 8 9 10 -> 开始报数:(以3为基准)
3置为-1;6置为-1;9置为-1;一轮完,从10继续循环至1处重新报数:将2置为-1;依次7置为-1;1置为-1;8置为-1;5置为-1;10置为-1.得到结果4,即

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值