xxl-job任务调度中心详细介绍和使用
一、概述
XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。xxl三个字母是其开发者许雪里名字的缩写。
特性:
1、简单:支持通过Web页面对任务进行CRUD操作,操作简单,一分钟上手;
2、动态:支持动态修改任务状态、启动/停止任务,以及终止运行中任务,即时生效;
3、调度中心HA(中心式):调度采用中心式设计,“调度中心”自研调度组件并支持集群部署,可保证调度中心HA;
4、执行器HA(分布式):任务分布式执行,任务"执行器"支持集群部署,可保证任务执行HA;
5、注册中心: 执行器会周期性自动注册任务, 调度中心将会自动发现注册的任务并触发执行。同时,也支持手动录入执行器地址;
6、弹性扩容缩容:一旦有新执行器机器上线或者下线,下次调度时将会重新分配任务;
7、路由策略:执行器集群部署时提供丰富的路由策略,包括:第一个、最后一个、轮询、随机、一致性HASH、最不经常使用、最近最久未使用、故障转移、忙碌转移等;
8、故障转移:任务路由策略选择"故障转移"情况下,如果执行器集群中某一台机器故障,将会自动Failover切换到一台正常的执行器发送调度请求。
9、阻塞处理策略:调度过于密集执行器来不及处理时的处理策略,策略包括:单机串行(默认)、丢弃后续调度、覆盖之前调度;
10、任务超时控制:支持自定义任务超时时间,任务运行超时将会主动中断任务;
11、任务失败重试:支持自定义任务失败重试次数,当任务失败时将会按照预设的失败重试次数主动进行重试;其中分片任务支持分片粒度的失败重试;
12、任务失败告警;默认提供邮件方式失败告警,同时预留扩展接口,可方便的扩展短信、钉钉等告警方式;
13、分片广播任务:执行器集群部署时,任务路由策略选择"分片广播"情况下,一次任务调度将会广播触发集群中所有执行器执行一次任务,可根据分片参数开发分片任务;
14、动态分片:分片广播任务以执行器为维度进行分片,支持动态扩容执行器集群从而动态增加分片数量,协同进行业务处理;在进行大数据量业务操作时可显著提升任务处理能力和速度。
15、事件触发:除了"Cron方式"和"任务依赖方式"触发任务执行之外,支持基于事件的触发任务方式。调度中心提供触发任务单次执行的API服务,可根据业务事件灵活触发
二、框架架构
源码中xxl-job架构图:doc/XXL-JOB架构图.pptx
1.仓库地址
1.1源码仓库地址
github:https://github.com/xuxueli/xxl-job
gitee:https://gitee.com/xuxueli0323/xxl-job
1.2中央仓库地址
<!-- http://repo1.maven.org/maven2/com/xuxueli/xxl-job-core/ -->
<dependency>
<groupId>com.xuxueli</groupId>
<artifactId>xxl-job-core</artifactId>
<version>${最新稳定版本}</version>
</dependency>
1.3源码目录介绍
- /doc :文档资料
- /db :“调度数据库”建表脚本
- /xxl-job-admin :调度中心,项目源码
- /xxl-job-core :公共Jar依赖
- /xxl-job-executor-samples :执行器,Sample示例项目(大家可以在该项目上进行开发,也可以将现有项目改造生成执行器项目)
2.框架模块
2.1组成模块
- 负责管理调度信息,按照调度配置发出调度请求,自身不承担业务代码。调度系统与任务解耦,提高了系统可用性和稳定性,同时调度系统性能不再受限于任务模块;
- 支持可视化、简单且动态的管理调度信息,包括任务新建,更新,删除,GLUE开发和任务报警等,所有上述操作都会实时生效,同时支持监控调度结果以及执行日志,支持执行器Failover。
2.2执行模块(执行器)
- 负责接收调度请求并执行任务逻辑。任务模块专注于任务的执行等操作,开发和维护更加简单和高效;
- 接收“调度中心”的执行请求、终止请求和日志请求等。
2.3注册中心模块
XXL-RPC的注册中心,是可选组件,⽀持服务注册并动态发现,可选择不启⽤,直接指定服务提供⽅机器地址通讯,选择启⽤时,内置
可选⽅案:“XXL-RPC-ADMIN 轻量级服务注册中心”(推荐)、“ZK注册中心”、“Local注册中心”
2.4执行器模块
执⾏器⽅⾯是基于数据库的集群⽅案,数据库选⽤Mysql;集群分布式并发环境中进⾏定时任务调度时,会在各个节点会上报任务,存
到数据库中,执⾏时会从数据库中取出触发器来执⾏,如果触发器的名称和执⾏时间相同,则只有⼀个节点去执⾏此
2.5服务通讯模块
XXL-RPC提供多中通讯⽅案:⽀持 TCP 和 HTTP 两种通讯⽅式进⾏服务调⽤;其中 TCP 提供可选⽅案 NETTY ,HTTP 提供可选
⽅案 NETTY_HTTP (新版本移除了Mina和Jetty通讯⽅案,主推Netty;如果有需要可以参考旧版本)。
三、xxl-job的使用
1.初始化数据库信息
1.1xxl-job数据表脚本
- 注:建表时注意第一行建数据库脚本,根据自己情况选择是否需要建库
2.1修改配置信息
### web
server.port=8080
server.servlet.context-path=/xxl-job-admin
### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false
### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/
### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########
### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model
### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/youth_xxljob?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai
spring.datasource.username=youth_xxljob
spring.datasource.password=EfEi4xztSS5PLPTh
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
spring.datasource.hikari.validation-timeout=1000
### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.from=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
### xxl-job, access token
xxl.job.accessToken=
### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN
## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100
### xxl-job, log retention days
xxl.job.logretentiondays=30
2.运行xxl-job调度中心
2.1启动调度服务
启动两个模块:xxl-job-admin、xxl-job-executor-sample-springboot
根据自己情况修改端口
2.2.访问地址
http://localhost:8080/xxl-job-admin
(8080端口和上下文路径根据自己的设置的为准)
### web
server.port=8080
server.servlet.context-path=/xxl-job-admin
2.3登录初始账号密码
账号:admin
密码:123456
2.4xxl-job调度中心界面
四、xxl-job集成执行器
1.文件配置
1.1maven依赖
<!-- xxl-job-core -->
<dependency>
<groupId>com.xuxueli</groupId>
<artifactId>xxl-job-core</artifactId>
<version>2.3.0</version>
</dependency>
1.2集成Xxl-job的properties配置
.properties文件
### 调度中心部署跟地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### 执行器通讯TOKEN [选填]:非空时启用;
xxl.job.accessToken=
### 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
xxl.job.executor.appname=xxl-job-executor-sample
### 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
xxl.job.executor.address=
### 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
xxl.job.executor.ip=
### 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
xxl.job.executor.port=9999
### 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
xxl.job.executor.logpath=D:/xxl-job-executor/logs
### 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
xxl.job.executor.logretentiondays=30
.yml文件
xxl:
job:
### xxl-job, access token:执行器通讯TOKEN,非空时启用
accessToken: ''
admin:
### xxl-job admin address list:调度中心部署跟地址:如调度中心集群部署存在多个地址则用逗号分隔。执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调"。
addresses: http://127.0.0.1:8081/xxl-job-admin
### xxl-job executor address:执行器"AppName"和地址信息配置:AppName执行器心跳注册分组依据;地址信息用于"调度中心请求并触发任务"和"执行器注册"。执行器默认端口为9999,执行器IP默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用。单机部署多个执行器时,注意要配置不同执行器端口;
executor:
address: ''
appname: ${spring.application.name}
ip: 'localhost'
### xxl-job log path:执行器运行日志文件存储的磁盘位置,需要对该路径拥有读写权限
logpath: D:/xxl-job-executor/logs
### xxl-job log retention days:执行器Log文件定期清理功能,指定日志保存天数,日志文件过期自动删除。限制至少保持3天,否则功能不生效;
logretentiondays: 30
port: 9999
注:
xxl.job.admin.addresses
应调度中心地址,注意IP和名称xxl.job.executor.appname
对应执行器名称
1.3执行器配置
package com.xxl.job.executor.core.config;
import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* xxl-job config
*
* @author xuxueli 2017-04-28
*/
@Configuration
public class XxlJobConfig {
private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
@Value("${xxl.job.admin.addresses}")
private String adminAddresses;
@Value("${xxl.job.accessToken}")
private String accessToken;
@Value("${xxl.job.executor.appname}")
private String appname;
@Value("${xxl.job.executor.address}")
private String address;
@Value("${xxl.job.executor.ip}")
private String ip;
@Value("${xxl.job.executor.port}")
private int port;
@Value("${xxl.job.executor.logpath}")
private String logPath;
@Value("${xxl.job.executor.logretentiondays}")
private int logRetentionDays;
@Bean
public XxlJobSpringExecutor xxlJobExecutor() {
logger.info(">>>>>>>>>>> xxl-job config init.");
XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
xxlJobSpringExecutor.setAppname(appname);
xxlJobSpringExecutor.setAddress(address);
xxlJobSpringExecutor.setIp(ip);
xxlJobSpringExecutor.setPort(port);
xxlJobSpringExecutor.setAccessToken(accessToken);
xxlJobSpringExecutor.setLogPath(logPath);
xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
return xxlJobSpringExecutor;
}
/**
* 针对多网卡、容器内部署等情况,可借助 "spring-cloud-commons" 提供的 "InetUtils" 组件灵活定制注册IP;
*
* 1、引入依赖:
* <dependency>
* <groupId>org.springframework.cloud</groupId>
* <artifactId>spring-cloud-commons</artifactId>
* <version>${version}</version>
* </dependency>
*
* 2、配置文件,或者容器启动变量
* spring.cloud.inetutils.preferred-networks: 'xxx.xxx.xxx.'
*
* 3、获取IP
* String ip_ = inetUtils.findFirstNonLoopbackHostInfo().getIpAddress();
*/
}
2.BEAN模式
任务以JobHandler方式维护在执行器端
- 新建执行器代码工程;
- 声明程序代码编写任务(类形式IJobHandler、方法形式@XxlJob)
- 在启动执行器工程后,再在调度中心控制台界面新建对应的执行器(执行器名称同xxl.job.executor.appname配置)
- 在调度中心控制台界面新建对应的任务(通过执行器、JobHandler进行关联)
2.1新建执行器类编写任务
package com.youth.executor.service.jobhandler;
import com.youth.core.handler.annotation.XxlJob;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;
import java.util.concurrent.TimeUnit;
/**
* @ClassName TestXxJob
* @Description TODO 测试任务
* @Author hippoDocker
* @Date 2022/5/23 21:02
**/
@Component
public class TestXxJob {
private static Logger logger = LoggerFactory.getLogger(TestXxJob.class);
@XxlJob("testJobHandler")
public void TestJobHandler() throws Exception {
logger.info("TestJobHandler");
for (int i = 0; i < 5; i++) {
logger.info("测试输出111:" + i);
TimeUnit.SECONDS.sleep(2);
}
}
@XxlJob("testJobHandler2")
public void TestJobHandler2() throws Exception {
logger.info("TestJobHandler2");
for (int i = 0; i < 5; i++) {
logger.info("测试输出222:" + i);
TimeUnit.SECONDS.sleep(2);
}
}
}
2.2在调度中心添加执行器
注意:添加的执行器要与
xxl.job.executor.appname
执行器名称对应,不然OnLine 机器地址无法自动注册;
2.3调度中心控制台界面新建对应的任务
JobHandler*
与@XxlJob(value="名称")
注解中value值对应
3.GLUE模式(Java | Shell | Python | NodeJS | PHP | PowerShell)
- 任务以源码方式维护在调度中心,支持通过Web IDE在线更新,实时编译和生效,因此不需要指定JobHandler;
- 源码支持Java(extends IJobHandler)、Shell脚本(#!/bin/bash)、Python脚本(#!/usr/bin/python)、NodeJS、PHP、PowerShell。
以GLUE模式(Java)为例进行说明。
3.1新建GLUE模式任务
3.2在线开发任务代码
4.调度日志
在执行完调度任务后调度中心会生成每次执行的日志
xxl.job.executor.logpath
=D:/xxl-job-executor/logs 配置的路径下也会生成日志
五、相关特性
1.调度中心HA(集群)
基于数据库的集群方案,数据库选用Mysql;
“调度中心”通过DB锁(select * from xxl_job_lock where lock_name = ‘schedule_lock’ for update)保证集群分布式调度的一致性,
假设同时存在调度中心A, B, C,
不同的调度中心在同一时刻仅有唯一的调度中心会获取到DB锁,
假如A获取锁成功,且A仅查询获取锁之后5秒内待触发的任务,
而其他调度中心B, C在获取锁的过程中会被阻塞,直到之前获取锁的调度中心A释放锁,
在A执行完调度释放锁后,其他的调度中心才可获取锁成功,
假如B成功获取锁(同样阻塞A, C),且B仅查询获取锁之后5秒内待触发的任务,
即通过DB锁来保证同一时刻仅有一个调度中心执行触发,且每次获取锁的调度中心会去触发不同时间段(拥有锁之后的5秒内)的任务。
具体细节可参见源码com/xxl/job/admin/core/thread/JobScheduleHelper.start()
2.调度线程池
调度采用线程池方式实现,避免单线程因阻塞而引起任务调度延迟。
- 异步调度:调度中心每次任务触发时仅发送一次调度请求,该调度请求首先推送
异步调度队列
,然后异步推送给远程执行器;- 异步执行:执行器会将请求存入
异步执行队列
并且立即响应调度中心,异步运行。- 在全异步化的基础上,调度中心中单个JOB一次调度平均耗时基本在 10ms 之内(基本为一次请求的网络开销);
因此,可以保证使用有限的线程支撑大量的JOB并发运行,
理论上默认配置下的调度中心,单机能够支撑 5000 任务并发运行稳定运行;
## 调度线程池最大线程配置【必填】
xxl.job.triggerpool.fast.max=200
# 同一任务一分钟内超过10次调度开销在500ms以上,则使用slow线程池调度
xxl.job.triggerpool.slow.max=100
注意:实际场景中,由于调度中心与执行器网络ping延迟不同、DB读写耗时不同、任务调度密集程度不同,会导致任务量上限会上下波动。
如若需要支撑更多的任务量,可以通过 “调大调度线程数” 、”降低调度中心与执行器ping延迟” 和 “提升机器配置” 几种方式优化。
3.并行调度
- XXL-JOB调度模块默认采用并行机制,在多线程调度的情况下,调度模块被阻塞的几率很低,大大提高了调度系统的承载量。
- XXL-JOB的不同任务(即不同jobHandler)之间并行调度、并行执行。
- XXL-JOB的单个任务(相同jobHandler),
- 针对
多个执行器
是并行
运行的,- 针对
单个执行器
是串行
执行的。- 同时支持任务终止。