算法:静态扫描快速识别源代码的缺陷

文章讨论了如何运用贪心算法设计一个动态缓存策略来最小化在源代码扫描中所需金币,给出了Java代码示例和两个示例问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法描述
静态扫描快速识别源代码的缺陷,静态扫描的结果以扫描报告作为输出:
1、文件扫描的成本和文件大小相关,如果文件大小为N,则扫描成本为N个金币
2、扫描报告的缓存成本和文件大小无关,每缓存一个报告需要M个金币
3、扫描报告缓存后,后继再碰到该文件则不需要扫描成本,直接获取缓存结果
给出源代码文件标识序列和文件大小序列,求解采用合理的缓存策略,最少需要的金币数。
输入描述:
第一行为缓存一个报告金币数M,1<=M<=100
第二行为文件标识序列:F1,F2,F3...Fn,  其中 1<=N<=10000, 1<=Fi<=1000
第三行为文件大小序列:S1,S2,S3...Sn, 其中 1<=N<=10000, 1<=Si<=10
输出描述:
采用合理的缓存策略,需要的最少金币数
补充说明:
收起
示例1
输入:
 5
 1 2 2 1 2 3 4
 1 1 1 1 1 1 1
输出:
 7
说明:
文件大小相同,扫描成本均为1个金币。缓存任意文件均不合算,因而最少成本为7金币
示例2
输入:
 5
 2 2 2 2 2 5 2 2 2
 3 3 3 3 3 1 3 3 3
输出:
 9
说明:
2号文件出现了8次,扫描加缓存成本共计3+5=8,不缓存成本为3*8=24,显然缓存更优。最优最成本为8+1=9

解题思路:
本题的核心思想是贪心算法。贪心算法的基本思想是把最优化问题的求解看作是一系列选择,每次选择当前状态下的最优选择(局部最优解)。
每做一次选择后,所求问题会简化为一个规模更小的子问题,从而通过每一步的最优解逐步达到整体的最优解。
每个文件,扫描时第一次就建立缓存,或者每次都重新扫描,没有其他情况。
所以我们需要考虑两种情况:
(1)每次遇到该文件都重新扫描;
(2)缓存扫描报告。
再比较这两种情况的成本,选择较小的成本作为当前文件的最优策略。
对于每个文件,都选择最优策略,然后将所有文件的最优策略累加,得到采用合理的缓存策略所需的最少金币数。最后,输出最少金币数即可。
二、源码(Java实现) 

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值