一、进程与线程
1、进程
进程(有时称为重量级进程)则是一个执行中的程序。每个进程都拥有自己的地址空间、内存、数据栈以及其他用于跟踪执行的辅助数据。操作系统管理其上所有进程的执行,并为这些进程合理地分配时间。进程也可以通过派生(fork 或 spawn)新的进程来执行其他任务,不过因为每个新进程也都拥有自己的内存和数据栈等,所以只能采用进程间通信(IPC)的方式共享信息。
2、线程
线程(有时候称为轻量级进程)与进程类似,不过它们是在同一个进程下执行的,并共享相同的上下文。可以将它们认为是在一个主进程或“主线程”中并行运行的一些“迷你进程”。
线程包括开始、执行顺序和结束三部分。它有一个指令指针,用于记录当前运行的上下文。当其他线程运行时,它可以被抢占(中断)和临时挂起(也称为睡眠)——这种做法叫做让步(yielding)。
一个进程中的各个线程与主线程共享同一片数据空间,因此相比于独立的进程而言,线程间的信息共享和通信更加容易。线程一般是以并发方式执行的,正是由于这种并行和数据共享机制,使得多任务间的协作成为可能。当然,在单核 CPU 系统中,因为真正的并发是不可能的,所以线程的执行实际上是这样规划的:每个线程运行一小会儿,然后让步给其他线程(再次排队等待更多的 CPU 时间)。在整个进程的执行过程中,每个线程执行它自己特定的任务,在必要时和其他线程进行结果通信。
当然,这种共享并不是没有风险的。如果两个或多个线程访问同一片数据,由于数据访问顺序不同,可能导致结果不一致。这种情况通常称为竞态条件(race condition)。幸运的是,大多数线程库都有一些同步原语,以允许线程管理器控制执行和访问。
另一个需要注意的问题是,线程无法给予公平的执行时间。这是因为一些函数会在完成前保持阻塞状态,如果没有专门为多线程情况进行修改,会导致 CPU 的时间分配向这些贪婪的函数倾斜。
二、Python多线程
Python 提供了多个模块来支持多线程编程,包括 thread、threading 和 Queue 模块等。程序是可以使用 thread 和 threading 模块来创建与管理线程。thread 模块提供了基本的线程和锁定支持;而 threading 模块提供了更高级别、功能更全面的线程管理。使用 Queue 模块,用户可以创建一个队列数据结构,用于在多线程之间进行共享。
三、尽量不要使用thread模块
推荐使用更高级别的 threading 模块,而不使用 thread 模块有很多原因。
- threading 模块更加先进,有更好的线程支持,并且 thread 模块中的一些属性会和 threading 模块有冲突。
- 低级别的 thread 模块拥有的同步原语很少(实际上只有一个),而 threading模块则有很多。
- 避免使用 thread 模块的另一个原因是它对于进程何时退出没有控制。当主线程结束时,所有其他线程也都强制结束,不会发出警告或者进行适当的清理。如前所述,至少threading 模块能确保重要的子线程在进程退出前结束。
四、Python-Threading模块
1、Threading模块对象
2、守护进程
避免使用 thread 模块的另一个原因是该模块不支持守护线程这个概念。当主线程退出时,所有子线程都将终止,不管它们是否仍在工作。如果你不希望发生这种行为,就要引入守护线程的概念了。threading 模块支持守护线程,其工作方式是:守护线程一般是一个等待客户端请求服务的服务器。如果没有客户端请求,守护线程就是空闲的。如果把一个线程设置为守护线程,就表示这个线程是不重要的,进程退出时不需要等待这个线程执行完成。
如果主线程准备退出时,不需要等待某些子线程完成,就可以为这些子线程设置守护线程标记。该标记值为真时,表示该线程是不重要的,或者说该线程只是用来等待客户端请求而不做任何其他事情。要将一个线程设置为守护线程,需要在启动线程之前执行如下赋值语句:thread.daemon = True(调用 thread.setDaemon(True)的旧方法已经弃用了)。同样,要检查线程的守护状态,也只需要检查这个值即可(对比过去调用 thread.isDaemon()的方法)。一个新的子线程会继承父线程的守护标记。整个 Python 程序(可以解读为:主线程)将在所有非守护线程退出之后才退出,换句话说,就是没有剩下存活的非守护线程时。
3、Thread类
实例一:创建 Thread 的实例,传给它一个函数
在第一个例子中,我们只是把 Thread 类实例化,然后将函数(及其参数)传递进去,和之前例子中采用的方式一样。当线程开始执行时,这个函数也会开始执行。
#!encoding=utf-8
import threading
from time import sleep,ctime
loops =[4,2]
def loop(nloop,nsec):
print('start loop {} at {}'.format(nloop,ctime()))
sleep(nsec)
print('loop {} done at {}'.format(nloop,ctime()))
#主函数
def main():
print('starting at:{}'.format(ctime()))
threads = []
nloops =range(len(loops))
#添加线程
for i in nloops:
t = threading.Thread(target=loop,args=(i,loops[i]))
threads.append(t)
#线程开始执行
for i in nloops:
threads[i].start()
#等待所有线程结束
for i in nloops:
threads[i].join()
print('all Done at:{}'.format(ctime