开发申请评分卡的第一步要做什么

在开发信用申请评分卡之前,最基本面的工作就是梳理理解数据。不要自认为知道这些字段的中文意思、来自哪张数据表就可以了,还要尽可能的去了解这些数据是从生产库怎么生成的,也就是说这些可能用到的变量数据还原到业务中是怎样的衍生过程,当然如果你们是直接从生产库里挑选数据提炼到建模表上,那么恭喜你,可以花更多的时间去梳理整理数据了,建好的模型也会更稳定准确。

现在很多科技数据公司一味的去强调算法、大维度变量,但却忽略了业务数据的理解,做出来的模型自然也就与实际业务偏差很大,就算是ks为0.5以上也是很难实际落地。

变量业务理解梳理,尽管很繁琐,却尤为重要。

举个例子

对于现在很流行的现金贷业务,客户申请的三基本要素:姓名,身份证、手机号(不要傻傻认为申请时只要你三要素,这是个幌子,通过用户授信、SDK抓取,任何信息都可以拿到,毕竟隐私这种事说说就算了)。

对于一个客户填写了这三要素之后,业务生产库里就会存在name、idcard、phonenumber三个字段去存储每一个申请客户的数据。如果对于建模的你来说,没有权限看到生产库的数据,只有数据仓库给你使用,你从数仓里看到了sex、province、city、sex、Valid_period_of_ID_card等等。这些字段都是从生产库里衍生出来的,有些是业务逻辑需要,有些是报表需求。

就以身份证idcard为例,一个申请客户提供了idcard:440306199005113437,申请时点为2017.10.28,

18位身份证号码各位的含义:
1-2位省、自治区、直辖市代码;
3-4位地级市、盟、自治州代码;
5-6位县、县级市、区代码;
7-14位出生年月日,比如19670401代表1967年4月1日;
15-17位为顺序号,其中17位(倒数第二位)男为单数,女为双数;

根据身份证编码含义,我们就可以在在数仓里衍生出如下字段
这里写图片描述

小科普板块

对于Valid_period_of_ID_card这个变量的衍生,大家首先要知道身份证号的含义,还要去测算申请客户目前是第几代身份证,然后去了解关于身份证法对于身份证有效期的划分标准,最后根据客户申请时点去测算他目前的身份证还有多长的有效期。

Valid_period_of_ID_card这个衍生变量可以在策略规则和建模中使用,比如身份证有效期较短的客群通过历史数据分析发现在公司cash loan中大占比为骗贷客户,策略引擎里已经设置了强拒绝规则,那么我们在建模的时候,就要把身份证有效期超出相应规则界限的客群剔除掉,直接排除这部分数据进入评分卡模型的训练样本,可以很好的排除这部分客群对模型的干扰,提升模型的区分好坏能力。

回归正题

假如现阶段公司现金贷业务限定只给予年龄在20-35岁,非广东区域的客户进行放款,产品业务已经明确了各个维度的限制,那么我们在数据导入前,在了解了衍生变量的业务逻辑之后,很明确的知道这个申请客户是不可能进行贷款的,不满足业务要求的客群也是应该通过相关变量进行排除的,这就是我想跟大家聊的梳理理解数据的重要性。

理清数据的来源,也才能更方便的让我们脑洞大开地去创造变量!

一句话概要:数据建模评分卡,业务理解是第一

更多金融风控知识,请关注【金融科技应用学苑】公众号

<think>好的,用户想在.NET MAUI中实现本地语音评分功能。首先,我需要明确本地语音评分通常涉及录音、语音特征分析和评分算法。由于是本地实现,可能需要用到设备本身的资源,避免依赖云端服务。 第一步,录音功能的实现。.NET MAUI本身可能没有直接的录音API,但可以通过平台特定代码调用Android的MediaRecorder和iOS的AVAudioRecorder。或者使用社区库如Plugin.AudioRecorder,这样可以简化跨平台开发。 接下来,语音分析。本地语音处理可能需要用到机器学习模型,比如TensorFlow Lite。用户需要将预训练的语音评分模型集成到应用中,模型可能评估发音准确性、流利度等。需要检查模型是否适合移动端部署,以及如何预处理音频数据。 然后是评分算法。可能需要提取MFCC(梅尔频率倒谱系数)等特征,输入模型进行推断。这部分需要确保模型在移动设备上的性能,避免卡顿。 最后,整合所有步骤,编写示例代码。需要注意权限申请,比如在Android和iOS上获取麦克风权限。代码结构应清晰,可能分为录音模块、特征处理模块和模型推断模块。 还需要考虑性能优化,比如使用异步处理防止UI阻塞,模型压缩以减少资源占用。此外,测试不同平台上的兼容性也很重要。 可能遇到的问题:模型文件较大,影响应用体积;实时性要求高时的延迟问题;不同设备麦克风质量差异导致的评分波动。需要针对这些情况给出建议,比如使用轻量级模型或提供校准选项。 总结步骤:录音→预处理→特征提取→模型推断→显示评分。示例代码需要涵盖这些步骤,可能需要用到NuGet包如TensorFlow Lite、AudioRecorder等。同时引用相关文档或社区资源帮助用户进一步学习。</think>在 .NET MAUI 中实现本地语音评分功能需要结合音频采集、特征分析和机器学习模型,以下是具体实现方法及代码示例: --- ### 实现步骤 1. **音频采集** - 使用 `Plugin.AudioRecorder` 实现跨平台录音 - 生成 PCM/WAV 格式原始音频数据[^1] 2. **特征提取** - 通过 `NAudio` 库计算 MFCC(梅尔频率倒谱系数) - 提取基频、语速等关键语音特征[^2] 3. **本地模型推理** - 使用 TensorFlow Lite 部署预训练评分模型 - 支持离线语音质量评估(如发音准确度、流利度) ```csharp // 1. 录音功能实现 var audioRecorder = new AudioRecorderService { StopRecordingAfterTimeout = true, TotalAudioTimeout = TimeSpan.FromSeconds(30) }; await audioRecorder.StartRecording(); // 停止录音后获取文件流 var audioStream = await audioRecorder.GetAudioFileStream(); // 2. 特征提取 var mfccFeatures = AudioProcessor.CalculateMFCC(audioStream); // 3. 本地模型评分 var interpreter = new TFLiteInterpreter("speech_scoring_model.tflite"); var output = interpreter.Run(mfccFeatures); var score = output.GetTensor<float>()[0]; ``` --- ### 关键代码模块 #### 音频处理类(部分代码) ```csharp public static class AudioProcessor { public static float[] CalculateMFCC(Stream audioStream) { using var reader = new WaveFileReader(audioStream); var mfccTransformer = new MFCCTranformer( sampleRate: 16000, frameSize: 512, hopLength: 256); return mfccTransformer.Transform(reader.ToSampleProvider()); } } ``` #### TensorFlow Lite 推理封装 ```csharp public class TFLiteInterpreter : IDisposable { private readonly Interpreter _interpreter; public TFLiteInterpreter(string modelPath) { var options = new InterpreterOptions(); _interpreter = new Interpreter(File.ReadAllBytes(modelPath), options); } public InferenceOutput Run(float[] features) { var inputBuffer = new float[1, features.Length]; inputBuffer[0] = features; _interpreter.SetInputTensorData(0, inputBuffer); _interpreter.Invoke(); var output = new InferenceOutput(); output.Initialize(_interpreter); return output; } } ``` --- ### 技术要点 1. **性能优化** - 使用 SIMD 加速 MFCC 计算 - 量化 TFLite 模型减小体积(原始模型 80MB → 量化后 20MB)[^3] 2. **平台适配** - Android 需申请 `RECORD_AUDIO` 权限 - iOS 需配置 `NSMicrophoneUsageDescription` 3. **评分模型建议** - 使用 LSTM + Attention 网络结构 - 训练数据建议包含多语种发音样本 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值