pytorch 1.7.0 读取mnist数据集加载并显示图像

本文展示了如何使用PyTorch加载MNIST数据集,并通过Matplotlib可视化首批次的图像。介绍了数据加载器的配置方法及图像展示的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整源代码:

import torch
import torchvision
import torchvision.transforms as transforms
from matplotlib import pyplot
import matplotlib.pyplot as plt
import numpy as np

batch_size = 64

train_dataset = torchvision.datasets.MNIST(root='data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='data', train=False, transform=transforms.ToTensor())

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    # img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    if one_channel:
        pyplot.imshow(npimg, cmap="Greys")
        pyplot.show()
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))


data_iter = iter(train_loader)
images, labels = data_iter.next()
img_grid = torchvision.utils.make_grid(images)
matplotlib_imshow(img_grid, one_channel=True)

print(torch.__version__)

效果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值