极限
定义
数列极限:n->+∞时
函数极限:x->+∞时 x->x0时
任意epsilon>0,存在某区间(对x0而言是去心邻域),函数值/数列值与极限值之差不超过epsilon
几何意义:寻找自己,不可振荡,不可冲天
极限性质
1:存在则唯一
2:
数列:收敛必有界,无界必发散
函数局部(收敛点附近)有界
3:
局部保号性:收敛点附近,函数值与极限值同正负
两个方向:
极限值->函数值/数列值
函数值/数列值->极限值(记得加等号,例如:1/x)
4:
保序性:极限值间大小关系与对应的函数值间大小关系相同
极限值->函数值/数列值
函数值/数列值->极限值(记得加等号,例如:1/x和1/2x)
5:
子列:母列中按顺序抽取无穷项
母列收敛=>任意子列收敛于同一值
任意子列发散,或二子列收敛于不同值=>母列发散
6:
寻找一收敛于但不等于函数收敛点的数列,则对应的数列极限f(xn),n->∞与函数极限相同
7:
复合函数极限:直接代,例如幂指函数
运算法则:线性法则,乘除亦可
8:
夹逼准则:xn<= yn <=zn 且 xn与yn极限值皆为a,则yn极限值为a,函数极限同理
数列的单调有界准则:
递增有上界则存在极限,且极限≤上界
递增有下界则存在极限,且极限≥下界
无穷小
定义
函数(数列)极限为0,则称函数(数列)是对应收敛点上的无穷小
函数(数列)"极限"为∞,则称函数(数列)是对应收敛点上的无穷的
性质
有限个无穷小之和/积仍为无穷小
无穷小与有界函数乘积/常量仍为无穷小
无穷间的比较
作比取极限
高阶无穷小a = o(b)
同阶无穷小a = O(b)
等价无穷小/大 a~b
等价无穷小替换
分子分母是若干因子之乘积,则可分别换,是加减则不可分别换
函数的连续性
定义
某点处有定义且函数值等于极限值,则该点处连续
常用判据:左极限 = 右极限 = 对应点函数值
闭区间上的连续:左端点右连续,右端点左连续
间断
可去间断点:左右极限相等,但对应点出了问题(无定义或函数值不等于极限值)
跳跃间断点:左右极限不相等
第二类间断点:左右极限一个或都不存在(无穷/振荡),无穷间断点/振荡间断点
性质
同一连续点的两函数线性运算,乘除后依旧连续
连续函数的性质
最大/小值定理:闭区间连续函数在对应闭区间上必有界必有最大值和最小值,必取得介于最大值与最小值之间的一切值(介值定理推论)
零点定理:闭区间连续函数两端点异号,则开区间必存在零点
介值定理:介于闭区间连续函数函数值相异的两端点间的任意常数,开区间内必存在某点函数值与之相等
导数
函数值增量与自变量增量之比的极限存在
可导一定连续,连续不一定可导(例如尖尖角,例如x开三次根号)
常用判据:先判断连续性,左导数 = 右导数(几何意义两侧切线斜率趋于一致)
例题:
微分
可微等价于可导
Δy = AΔx + o(Δx) 某点处函数值增量等于切线斜率乘自变量增量加自变量增量的高阶无穷小
记函数y某点处微分为:dy = AΔx
因为Δx = dx,故dy = Adx
例题:求微分即求dy,当作求导
近似
线性近似
例题:
泰勒公式
微分中值定理(鲜考,例题书上看)
罗尔定理/拉格朗日中值定理
闭区间连续,开区间可导,则开区间内必存在某点导数值与两端点连线斜率相等
柯西中值定理
两函数均闭区间连续,开区间可导,且分母导数不为0,则开区间必存在某点对应两函数导数比值等于两函数在区间上增量之比
求极限
type1
瞪眼法
type2
夹逼准则与单调有界准则
type3
以洛必达法则为核心,适时等价无穷小替换,提出确定项(如1/cosx),消零因子,换元
洛必达法则
0/0 ∞/∞ ; 0*∞或0/∞(取倒数) ; ∞ - ∞(通分) ;
某点处极限存在,两函数在去心邻域内可导,且分母导数不为0
则
若洛后极限存在或为无穷大,则原极限与之相等
若洛后极限不存在,则原极限不确定
求导
type1
例题1:
例题2:
type2
例题1:
type3
例题
type4
例题
极值点与拐点
曲率
不定积分
线性运算
连续函数必有原函数
∫ f(x)dx x是积分变量(对谁积分)
求导公式
背过重要积分
稍微有些套路的背表题:
分部积分法
凑微分法
有理函数积分
换元积分法
换元基本上就去个根号,把难处理的部分换掉
dx = (...)dt
三角函数套路题型
定积分
定义
定积分几何意义
面积
可积性
闭区间连续,则闭区间可积
闭区间有界,且只有有限个一类间断点,则闭区间可积
性质
线性运算
区间可加性(abc相对位置无所谓)
积分中值定理:闭区间连续,则闭区间必存在一点函数值与区间长度之乘积等于闭区间上的积分值
微积分基本定理
积出来,代进去
变上下限积分求导
例题
定积分的凑微分法和分部积分法和换元积分法
凑微分法:隐式换元,一般不会相应改变积分上下限
凑微分直接积出来,则代入上下限时,把上下限代入原积分变量
凑微分作为分部积分中间步骤时,亦把上下限代入原积分变量
分部积分法
换元积分法,显式换元时记得改变积分上下限(将所有x用t代替,dx = (...)dt)
例题:
常用公式
证明:
1,2奇偶函数则令x = -t
3,4则令x = 3.14/2 - t ; x = 3.14 - t
4,5则令x = T - t
例题:
反常积分
广义牛莱公式:积出来,代进去(求极限)
无穷限
瑕积分
求弧长
求平面面积
例题
求体积
平行截面法
旋转体
例题
立体几何
数量积向量积
直线与平面
二次曲线
空间曲线及其投影
二重极限
对任意epsilon>0,总存在邻域,函数值和极限值之差不超过epsilon
以任意方式趋近时,函数值都趋近于极限值,二重极限才存在
常用判据:以不同方式趋近时,极限值不同,则二重极限不存在
求二重极限
连续
二重极限存在且收敛点函数值等于极限值
全微分
下图第二行:
一阶偏导存在,在f(x,y)在(x,y)处连续是可微的必要条件
下图第三行:
一阶偏导存在,且一阶偏导连续,这是可微的充分条件
偏导数
例题
例题
求导与隐函数求导
上图第二道例题:
修正:
由F(x,y,z)=0,求二阶导时,z当做x,y的函数,x,y互相认为是常数
全微分形式不变形
逐层向下展开
空间曲线空间曲面
空间曲线切向量法二之
空间曲线切向量法三之
求交出空间曲线的两个空间曲面的法向量,两个法向量叉乘
方向导数与梯度
等值线(等量线)/等量面
方向导数:
某方向上函数值变化率,偏导则是x,y两个方向上的四个方向导数
梯度向量指向方向导数最大的方向,即函数值增大最快的方向;梯度向量反向为减小最快的方向
垂直于梯度方向,函数值不变
方向导数即梯度向量在某方向的投影
极值
重积分
二重积分
对称性
极坐标形式
例:
三重积分
取一点,让该点遍历Ω,看θ ρ z的变化范围
确定dz的上下限时,用类似于投影法的方法分析,先用x,y确定上下限,再替换x和y
柱面坐标直接化为三次积分dθ dρ dz
将x y通通化为ρcos 和 ρsin
取一点,让该点遍历Ω,看θ φ r的变化范围
球面坐标直接化为三次积分dθ dφ dr
x y z均化为 θ φ r
例题
重积分的应用:
级数
无穷级数简称级数
求前n项(部分和数列)之部分和,取极限,极限存在则收敛,否则发散
级数与部分和之差称为级数余项
常用级数
收敛级数的性质
性质三:级数中去掉或加上或改变有限项,级数敛散性不变,但收敛值可能变化
性质四:收敛级数任意加括号构成的新级数仍然收敛,且和不变
加括号后的新级数发散则原级数发散
加括号后的新级数收敛但原级数不一定收敛(例如:1 -1 1 -1 1 -1...)
性质五:收敛级数的必要条件:级数收敛则一般项必趋于零
一般项不趋于零则级数一定发散
一般项趋于零级数不一定收敛
正项级数审敛法
每一项皆>=零即为正项级数
正项级数收敛之充要条件:部分和数列Sn有上界
例题
例题
极限形式的比较审敛法
例题
比值审敛法(达朗贝尔审敛法)
根值审敛法(柯西审敛法)
微分方程
定义:含微分/导数的方程
常微分方程:一元函数的微分方程
偏微分方程:多元函数的微分方程
微分方程的阶:导数的最高阶
微分方程的解:解出那个函数,就是微分方程的解
微分方程的通解:
微分方程的解中任意常数的个数和微分方程阶数相同
微分方程的积分曲线族:微分方程通解的图形是一族曲线
微分方程的特解:确定微分方程通解中的任意常数
初始条件:用来确定通解中任意常数的条件
初值问题:求满足某初始条件的特解
例题:
可分离变量的微分方程:
一阶线性微分方程
实际上,x和y与用什么字母表示无关,从下面的例子
可以很容易看出
伯努利方程:
与用什么字母表示无关:
齐次方程:
冰云:即y/x以整体出现
换元法化为齐次方程:
其它形式的一阶微分方程通过换元化为上述四种: