小 Y 的背包计数问题

这篇博客探讨了一个背包计数问题,通过将物品分块并按剩余系分类,将时间复杂度优化到O(n^2)。博主介绍了如何使用动态规划策略,包括设置f[i][j]和dp[i][j]的状态转移方程,来解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目

点此看题

二、解法

神仙题,如果我们把物品按 n \sqrt n n 分块,那么第一部分的物品总量很少,第二部分没有选择的限制。

f [ i ] [ j ] f[i][j] f[i][j]为前 i i i个物品,选出来的总量是 j j j的方案数,转移:
f [ i ] [ j ] = ∑ f [ i − 1 ] [ j − k i ] f[i][j]=\sum f[i-1][j-ki] f[i][j]=f[i1][jki]暴力的时间复杂度 O ( n 2 ) O(n^2) O(n2),我们可以按剩余系分类,那么问题就转化成了求一个类似前缀和的东西,具体来说就是先枚举 j m o d    i j\mod i j

### 使用MATLAB实现背包问题算法 #### 遗传算法解决多背包问题 对于多背包问题,可以通过遗传算法来寻找最优解。下面展示了一个基于MATLAB的简单遗传算法实现案例[^1]: ```matlab % 初始化种群大小、迭代次数等参数 populationSize = 50; numGenerations = 200; % 定义物品数量及其价值重量向量 itemCount = length(values); weights = [w1, w2, ..., wn]; % 物品权重列表 values = [v1, v2, ..., vn]; % 物品价值列表 maxWeight = W; % 背包最大承重 % 创建初始随机种群 (染色体编码方式采用二进制表示法) initialPopulation = randi([0, 1], populationSize, itemCount); % 开始进化循环... for generation = 1:numGenerations fitnessScores = zeros(populationSize, 1); for i = 1:populationSize chromosome = initialPopulation(i,:); totalValue = sum(chromosome .* values); totalWeight = sum(chromosome .* weights); if totalWeight <= maxWeight fitnessScores(i) = totalValue; else fitnessScores(i) = -Inf; % 不满足约束条件则赋予极低适应度得分 end end % ...选择操作...交叉变异... end ``` 此代码片段展示了如何初始化种群并计算每一代个体的适应度分数。当总重量不超过给定的最大容量时,个体的价值越高意味着更好的解决方案。 #### 粒子群优化(PSO)方法求解单个背包问题 另一种常用的技术是粒子群优化(Particle Swarm Optimization),它模仿鸟群觅食行为来进行全局搜索。以下是利用PSO处理标准背包问题的一个基本框架[^2]: ```matlab function psoKnapsack() numParticles = 30; iterations = 100; c1 = 1.4962; % 认知因子 c2 = 1.4962; % 社会因子 inertiaWt = 0.729;% 惯性权值 % 初始化位置速度矩阵以及个人最佳和个人历史记录 positions = rand(numParticles, size(weights)); velocities = zeros(size(positions)); personalBestPositions = positions; globalBestPosition = min(sum(personalBestPositions.*values), [], 'all'); for iter = 1:iterations for idx = 1:numParticles r1 = rand();r2=rand(); velocities(idx,:) = ... inertiaWt * velocities(idx,:) + ... c1*r1*(personalBestPositions(idx,:)-positions(idx,:)) + ... c2*r2*(globalBestPosition-positions(idx,:)); positions(idx,:) = positions(idx,:) + velocities(idx,:); % 更新个人和社会最好位置 end end end ``` 这段脚本构建了一组虚拟“粒子”,它们会在每次迭代过程中调整自己的状态以探索潜在的最佳装载方案。 #### 关于贪婪策略的应用实例 除了上述两种较为复杂的方法外,还可以尝试应用贪心法则快速获得近似解。这里给出一个具体的例子——针对特定面额组合下的最小硬币数目问题[^3]: ```matlab function [n,x]=payback(v,y,m) m,n=size(y); x=zeros(m,1); for j=m:-1:1 while y(j)<=v && v>0 x(j)=x(j)+1; v=v-y(j); end end if v~=0,error('无法精确支付'); else disp(['所需最少硬币数:',int2str(sum(x))]); disp(['具体分配情况:'); cellfun(@disp,num2cell(x));end ``` 该函数接收三个输入参数:`v`代表待兑换金额;`y`为可用的不同面值数组;而返回的结果则是所需的最少硬币计数及对应的分布详情。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值