AGI|知识治理:直击知识库知识质量与精准检索痛点

目录

一、知识库当前面临的痛点

二、解决方案

1.引入大模型时代的文档提取、转换神器—Miner U

2. 版面识别

3.分段调整

三、知识治理在“问学平台”的应用实践


一、知识库当前面临的痛点

1、文件类型多样,常规处理方法无法兼容文本、图片、表格、公式等内容,OCR模型能力差,识别不准确;

2、对于上传的知识库文件,无法手动进行编辑、调整分段等操作;

3、对于文档中的图片、复杂表格解析识别不准确;

4、双列排版识别后会丢失语义顺序。

二、解决方案

1.引入大模型时代的文档提取、转换神器—Miner U

Miner U介绍:

MinerU是由上海人工智能实验室OpenDataLab团队开发的开源文档解析工具,旨在解决大模型训练中高质量结构化数据的提取难题。其核心价值在于将PDF、网页、电子书等复杂文档转换为机器可读的Markdown、JSON格式,同时保留原始文档的语义逻辑与多模态元素,显著提升AI语料准备效率。

◼ 主要技术功能:

 语义一致性:支持移除页眉、页脚、脚注、页码等内容,确保语义连贯。

▪ 人类可读性:输出文本按照人类阅读顺序排列,支持单列、多列及复杂布局。

▪ 结构保留:保留原始文档的结构,包括标题、段落、列表等。

 多样化内容提取:支持提取图像、图像描述、表格、表格标题和脚注。

▪ 公式转换:自动识别文档中的公式并转换为LaTeX格式。

▪ 表格转换:自动识别文档中的表格并转换为HTML格式。

 OCR功能:自动检测扫描版PDF和乱码PDF,并启用OCR功能。

▪ 多语言支持:OCR功能支持84种语言的检测和识别。

▪ 多种输出格式:支持多模态和NLP Markdown、按阅读顺序排序的JSON以及丰富的中间格式。

▪ 可视化结果:支持布局可视化和跨度可视化,便于高效确认输出质量。

2. 版面识别

知识库上传的文档通过版面识别技术可以准确地识别文档中的文字、图片、表格等元素,并将解析出的元素和关键信息进行结构化存储和展示。


接着可对文档进行知识治理,包含对版面识别的内容进行排序和微调。

3.分段调整

知识库文档先选择自动或自定义切片器进行分段后,支持用户在此分段的基础上进行手动调整分段,包括“取消分段”、“添加分段”、“修改分段”。


三、知识治理在“问学平台”的应用实践

1.以知识治理在企业供应链管理中的应用为例,展示知识治理后提升了检索精准度

未进行知识治理的效果:当AI应用挂载未经知识治理的文件时,AI应用无法根据知识库实现准确回答

进行知识治理的效果:当AI应用挂载经过知识治理的同一文件后,AI应用可以按照知识治理成果进行回答

2.以财务发票为例,展示对版面识别的内容进行微调后提升了检索精准度

未进行知识治理的效果:当AI应用挂载未对版面识别的内容进行微调过的发票时,AI应用无法根据知识库实现准确回答

进行知识治理的效果:当AI应用挂载对版面识别的内容进行了微调的发票时,AI应用可以根据知识库实现准确回答

四、知识治理适用场景

版权声明:本文由神州数码云基地团队整理撰写,若转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值