波恩大学Cyrill Stachniss SLAM课程

本文深入探讨了SLAM(同时定位与建图)的概念,包括其核心问题、方法和应用场景。介绍了全SLAM和在线SLAM的区别,强调了概率方法在处理不确定性中的作用。SLAM不仅是机器人导航的关键,也是室内、室外、空域和水下应用的基础。

Introduction to SLAM

Simultaneous Localization and Mapping

Graph-based SLAM using pose graphs

Graph-based SLAM with landmarks

Robust optimization in SLAM

Relative pose estimation using vision

What is SLAM

同时定位映射问题,我们将引入最小二乘,首先,这是我们用来进行状态估计的主要技术。然后我们研究一种2D SLAM问题,这种问题比较容易解决。掌握并理解激光测距仪,然后我们可以缓解问题。将使问题更笼统,从而在我们的数据中出现异常值关联,然后我们还研究如何获取状态估计。

伴随着三个问题,localization Mapping SLAM
定位是估计位姿的问题,就是我在哪里的问题
建图是构建一个世界是什么样子的地图
SLAM是以上两个问题同时进行,同时解决定位和建图问题。
这是富有挑战的,因为我们通常需要有一个地图来很好的估计我们的位姿,另一方面,我们需要有一个好的位姿估计来构建一个地图。所以我们两个任务有依赖。如果我们有一个地图,那么我们定位就很简单。如果我们有一个好的位姿,那么建图就很简单。但是如果你想同时解决这两个问题,这将会变得富有挑战性和更棘手。
为了解决我们执行的大多数导航任务而设计的fation一个重要的部分,并已在许多的不同的设置中使用,基本上是大多数应用程序的关键要素。

  • Computing the robot’s poses and the map of the environment at the same time
  • Localization:estimating the robot’s location
  • Mapping:building a map
  • SLAM:building a map and localizing the robot simultaneously

Simultaneous Localization and Mapping or SLAM

  • Build a map of the environment from a mobile sensor platform
  • At the same time, localize a mobile sensor platform in the map build so far
  • Online variant of the bundle adjustment problem for arbitrary sensors

SLAM Applications

  • SLAM is central to a range of indoor, outdoor, air and underwater applications for both manned and automous vehicles.

Definition of the SLAM Problem

Given

  • The robot’s controls

u1:T=u1,u2,u3,...,uTu_{1:T} = {u_1,u_2,u_3,...,u_{T}}u1:T=u1,u2,u3,...,uT

  • Observations
    z1:T=z1,z2,z3,...,zTz_{1:T}={z_1,z_2,z_3,...,z_T}z1:T=z1,z2,z3,...,zT

  • Wanted

    • Map of the environment
      m
    • Path of the robot
      x0:T=x0,x1,x2,...,xTx_{0:T}={x_0,x_1,x_2,...,x_T}x0:T=x0,x1,x2,...,xT

Probalilistic Approaches

  • Uncertainty in the robot’s motions and observations
  • Use the probability theory to explicitly represent the uncertainty
    我的运动充满了不确定性和运动的不确定性,观察将影响我们实际拥有的整个地图的不确定性,所以归结为估计X和概率分布P给定,所以我们将其视为给定的所有观察结果和所有控制命令,所以从SLAM的概率观点来看,一切都归为估计这种概率分布。

In the Probabilistic World

Estimate the robot’s path and the map
p(x0:t,m∣z1:T,u1:T)p(x_{0:t},m|z_{1:T,u_{1:T}})p(x0:t,mz1:T,u1:T)

Pdistribution
x0:Tx_{0:T}x0:Tpath
mmap
Z1:TZ_{1:T}Z1:Tobservations
u1:Tu_{1:T}u1:Tcontrols

在这里插入图片描述从图形角度来看,像贝叶斯网络这样的图形模型是一种可以说的方式,说明概率分布或者说明依赖关系之间的概率分布,所以我们这里有不同的圈子,圆圈指的是您从此处看到的变量。在不同的点,我们有不同的控制命令,U。观察和我们的地图,我们可以读取该图中的错误,作为影响,因此例如控制命令会影响下一个脉冲,所以如果我在某处并且正在执行控制命令,这是一个对已知的下一个观测结果卷曲的影响,因此也处于我所处的位置xtx_txt会影响我的下一个观测结果ztz_tzt

Full SLAM vc. Online SLAM

  • Full SLAM estimates the entire path
    p(x0:T,m∣z1:T,u1:T)p(x_{0:T},m|z_{1:T},u_{1:T})p(x0:T,mz1:T,u1:T)
  • Online SLAM seeks to recover only the most recent pose
    p(xt,m∣z1:t,u1:t)p(x_t,m|z_{1:t},u_{1:t})p(xt,mz1:t,u1:t)

机器人在环境中行驶,他根据地图做出决定,他可以构建,但是对之前的位置并不感兴趣,只对我现在在哪里感兴趣,以便做出正确的决定。这是我们不再参考online-SLAM的地方

  • Oneline SLAM

  • Online SLAM means marginalizing out the previous poses
    p(xt,m∣z1:t,u1:t)=∫...∫p(z0:t,m∣z1:t,u1:t)dxt−1...dx0p(x_t,m|z_{1:t},u_{1:t})= \int ... \int p(z_{0:t,m|z_{1:t},u_{1:t}})dx_{t-1}...dx_0p(xt,mz1:t,u1:t)=...p(z0:t,mz1:t,u1:t)dxt1...dx0

  • Integrals are typically solved recursively, one at at time

full-SLAM 分布,然后只有当前时间的位姿实际存在

因此,这种online-SLAM的图像化模型基本上可以归结为m和xt+1x_{t+1}xt+1变量整合其他变量

在这里插入图片描述
在这里插入图片描述

Summary

  • Mapping is the task of modeling the environment
  • Localization means estimating the robot’s pose
  • SLAM = simultaneous localization and mapping
  • Full SLAM vs. Online SLAM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philtell

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值