823. 带因子的二叉树

文章介绍了如何使用哈希表解决一个与二叉树相关的编程问题。通过对输入数组排序,计算每个元素作为根节点时能构成的不同二叉树数量,通过哈希表存储中间结果并避免重复计算,最后返回所有可能二叉树的总数。由于数据量可能大,采用了模运算确保结果在int范围内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、考察知识点

本题虽是二叉树问题但和二叉树没太大关系,我认为关键是对哈希表的应用。

二、代码

class Solution {
public:
    int numFactoredBinaryTrees(vector<int>& arr) {
        constexpr long kMod = 1000000007;
        std::sort(arr.begin(), arr.end());
        unordered_map<int, long> dp;
        for(int i = 0; i < arr.size(); ++i){
            dp[arr[i]] = 1;
            for (int j = 0; j<i; ++j){
                if(arr[i] % arr[j]== 0 && dp.count(arr[i] / arr[j])){
                    dp[arr[i]] +=  (dp[arr[j]] * dp[arr[i] / arr[j]]) % kMod;
                }
            }
        }
        long ans = 0;
        for(const auto& kv:dp)
        {
            ans += kv.second;
        }
        return ans % kMod;
    }
};

有用题目中说明,数据量可能过大,所以除以kMod保证结果始终在int的范围内。

本题的主要思路,将数据从小到大依次作为二叉树的节点,算出每个数据作为节点的二叉树个数。

arr[i]作为根节点A, arr[j]作为其中的一个叶子节点B,arr[i] / arr[j]作为另一个叶子节点C。

该根节点可以组成的二叉树的个数为B和C的子树的乘积。最后 遍历哈希表中每个根节点可以组成的二叉树的和就是最终答案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值