常见的图像分割网络了解(中)

本文介绍了两种深度学习图像分割网络:RefineNet和PSPNet。RefineNet通过融合不同分辨率的特征图,充分利用各层信息,解决了膨胀卷积的限制。PSPNet则采用金字塔池化模块获取不同感受野的全局信息,结合全局与局部特征。两种网络在图像分割中各有特色,提供了解决图像分割问题的不同思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RefineNet

   这个网络主要针对使用膨胀卷积在不进行下采样扩大感受野出现的限制(限制高层特征和输出尺度只能为输入的1/8,膨胀卷积导致严重的细节损失),以及FCN8-s不能有效利用中间层信息。这里认为所有层的信息对于语义分割都是有帮助的。高层的信息识别图像的区域类别,底层有利于保留轮廓、细节等信息。RefineNet结合这些特征进行设计。
   网络结构如下所示,这里主要是将不同分辨率的特征图进行融合,最左边一栏使用的是ResNet,即将图像通过预训练好的ResNet获得特征图(这个ResNet按特征图的分辨率分成四个ResNet blocks,不同的block输出不同分辨率的特征图,这样就有高层和低层特征之分),然后向右把四个blocks分别作为4个path通过RefineNet block进行融合,最后获得一个refined特征图。除了RefineNet-4,所有的RefineNet block 都是二输入的,用于融合不同level做refine。



   RefineNet和之前分割网络的对比如下所示,可以看出其融合了各层的信息:



   具体的block如下图所示:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值