光学字符识别(OCR)
- 光学字符识别(OCR)目前已经有了很广泛的应用,很多开源项目都会嵌入OCR 来扩展原有的能力,例如身份证识别、出入停车场的车牌识别、拍照翻译等等
- 本文介绍的开源的中文 OCR 项目,是基于 chineseocr 做出改进,是一个超轻量级的中文字符识别项目(其实一点也不轻量)
- 官方地址
简介
- chineseocr_lite 项目表示,相比 chineseocr,它采用了轻量级的主干网络 PSENet,轻量级的 CRNN 模型和行文本方向分类网络 AngleNet
- chineseocr_lite 在横排文字和竖排文字的识别上都有不错的效果,而且它提供的交互式网页端能直接在页面插入图像与调用识别模型
项目实测
- 由于Docker能够提供一个不依赖主机操作系统的隔离空间,并且兼具良好的安全性与可移植性,本项目将在Docker环境下对该轻量级模型进行测试
- 先看看使用作者项目里自带图片的测试效果。识别结果与项目里提供的类似,这里耗时较长主要是由于我们测试时没有使用 GPU 的缘故
Docker环境搭建
运行环境
-
Ubuntu 18.04
-
Python 3.6.9
-
Pytorch 1.5.0.dev20200227+cpu(作者推荐 1.2.0)
命令操作
- 使用命令查看当前的python的版本,python -V;如果不是3.6版本需要将3.6版