作者|疯哥
专栏|《掌握 n8n,开启 AI 自动化之旅》
引言
公司中下面这几个场景是否似曾相识:
市场部小M (跨平台数据搬运工)
“每天手动把社区中新用户名单→复制到Excel→再粘贴进邮件系统发欢迎信,漏人/发错是家常便饭。”
财务部老C (人肉对账地狱)
“月底通宵导出银行流水、销售系统订单、开票记录,对账到眼瞎,错1笔查半天。”
运营部小Z (机械式内容分发)
“公众号推文发布后,要挨个复制链接→转成短链→发到20个用户群+微博+知乎,半小时就没了。”
你别说,我过去认为这种机械重复的“脏活累活”是大多数初级职场人逃不掉的宿命。直到有一天,我这个连“ hello world ”都不会写的纯小白,竟然用了三款“零代码自动化神器”硬生生把工作效率翻了3倍!
我们再来看一下他们掌握AI自动化这门手艺之后的效果:
市场部小M
过去:人工手动搬运,花费30分钟/天。 现在:工作流自动触发,0延迟。
财务部老C
过去:耗费45个小时/月,错误几率5%。 现在:自动实时同步,错误率0.1%。
运营部小Z
过去:重复性劳动复制粘贴,拼的是手速。 现在:一键发布10个平台,节省150小时/年。
能准时下班不说,大部分时间还可以都用来摸鱼,最后老板裁掉部门其他两位同事只留下了你,因为,这些活不需要这么多人干了,老板每月直接节省好几万的工资支出,听起来有点不可思议,我不想骗你,这样的事情已经在悄悄发生了。
... 这一段小场景,能否引起你的一些思考。
接下来,展示一下我搭建了哪些有意思的AI自动化工作流。
一个自动获取n8n版本信息并自动AI翻译成中文的工作流。
一个自动获取n8n官方最新模版信息并自动AI翻译成中文的工作流。
一个订阅RSS新闻并自动AI翻译成中文最后群发邮件的工作流
一个利用AI自动甄别诈骗网站的工作流。
。。。太多了就不一一介绍,我截图给大家看一下
疯哥的n8n AI自动化任务库
获取更多实用AI工作流源码:https://n8nchina.net/robot.html
说实话提高效率是其次,关键是可以让不懂编程的你可以自己通过一段时间的学习训练就能做出专业的能解决实际问题的应用,跑起来之后才能感觉到效率真的提高了。重点是不懂编程你就能搭建这些好玩的自动化工作流,简单的小任务2-3天,复杂点的任务一周左右,掌握AI自动化工具后,剩下就是你的想法和创意了。
Zapier、Make (原Integromat)、n8n,它们像三把不同的钥匙,瞬间打开了自动化的大门。像一把双刃剑,对职场小白来说它让准时下班从奢望变成日常,对老板来说减员降本成为现实。
📘 关联文章
顺便提一嘴,除了Zapier、Make 国内还有类似Dify和扣子这样主打AI应用、各种插件和AI客服的工具大家可以阅读我之前这篇文章《一文读懂n8n:零基础玩转AI智能体,我该怎么选!与Coze(扣子)、Dify区别在哪?》。
我们继续 👉 现在问题来了: 它们功能都这么强,界面也大相径庭,收费策略更是天差地别!号称“开箱即用”的Zapier真的适合所有人?以“逻辑强大”著称的Make会不会太难上手?开源免费的n8n,是不是藏着什么“暗坑”?🤔
别急! 疯哥这篇基于本人踩坑无数、实战数月的深度测评整理出来的,将彻底拆解这三款顶流工具的真实面目、隐藏优势与致命短板。无论你是想告别996的职场人,还是渴望解放双手的创业者,看完这篇“终极对决”,你一定能找到最适合你的那款效率核武器! ~现在开始!
Zapier、Make 、n8n 简介
✅ n8n.io
-
自由度最高,适合大规模AI自动化,AI深度集成,成本最低。
-
金融、医疗、科技、互联网、跨境等行业。
-
销售管理、市场营销、系统开发运维、IT团队、嵌入自动化、无限对接现有应用、后端原型设计等业务环节。
n8n提供的AI节点和相关工具非常多,可以在n8n中做任何你想做的关于AI的自动化任务,一句话概括“n8n打开我们对AI + 自动化无限的可能性”。
✅ make.com
-
动画效果最强,中度复杂逻辑处理,费用比zapier低些。
-
金融、电商、IT运维、制造等行业。
-
销售管理、市场营销、系统开发运维、IT团队、嵌入自动化、无限对接现有应用、客户体验业务环节。
通过Make官方介绍Make的AI工具能帮助我们尝试一下几种业务场景:
-
分析社交用户反馈:AI帮助我们自动分析评论从中发现趋势和客户情绪。
-
对邮件进行分类:根据内容或标题对邮件进行分类,不同类别走不同流程,并作出快速响应。
-
对市场和竞争对手的分析:AI获取关键词、总结报告、翻译新闻等。
-
法律和合同:AI扫描合同,自动分析细节。
...
✅ zapier.com
-
上手最简单易用,适合小白新手,轻量级无代码自动化,成本最高。
-
个人创作者、教育等行业。
-
销售渠道、营销活动、客户服务、数据管理、项目管理等业务。
相对n8n和Make Zapier在AI领域发力似乎还不够,多款n8n已经有的疯哥已经在自己任务中经常使用的AI节点 如MCP节点,Zapier还处于测试阶段。截图:
虽然都是测试版,在实际使用过程中还是可以用的,但是同样n8n提供了比Zapier多得多的AI工具,并且是免费的,干嘛还要用Zapier的呢?
为什么AI自动化如此重要?
自 ChatGPT 问世以来,有句话你一定听的耳朵都起茧了:「AI淘汰的不是你,而是不会使用AI的人」。事实的确如此。尤其当你掌握“AI+自动化”组合后,那些原本需专人处理、步骤固定的耗时任务,现在可交给24小时不间断运行的AI和自动化工具完成。
同样,也适合企业,老板们一定要知道这个道理 - AI自动化不仅能为企业节省成本,更为个人释放宝贵时间,让生产力聚焦于真正有价值的任务,可以将AI自动化看成可以替代人干活的数字员工,不用休息24小时干活,更重要的是不要工资,不需要缴纳五险一金。
AI + 自动化 = 解放个人/企业生产力
如果你以前都靠“埋头苦干”完成工作任务或提升效率,现在就必须转变思维:职场个人、创业者和企业老板必须要思考这个问题:如何利用AI自动化处理重复性、门槛较低并且毫无成就感的任务”,将精力投入到真正有价值、能带来满足感的事务中去。
Zapier、Make 、n8n在过去我们成为“零代码”工具,现在我们比较少提零代码工具,毕竟现在写代码都可以用AI代劳了,就想对弱化了“零代码”工具的作用,但是,诡异的是,“零代码”工具现在借着AI浪潮有借尸还魂了。我们现在更多称它们叫“AI自动化”工具,我们更多是在实现业务自动化过程中调用了AI大模型的能力,确实比过去的“零代码”工具和“自动化”工具智能不少,现在,流行的MCP技术更是将AI自动化推向了无所不能的境界。这三款工具操作有差异,但是核心逻辑都是一致的。
⏰ 小知识
“零代码工具:无需编程基础,通过可视化界面拖拽操作,让普通人也能一键搭建自动化流程的神器。”
📘 关联文章
了解MCP基础入门可以阅读我之前这两篇文章《第十章:n8n MCP动手搭建、实战案例拆解,n8n+MCP+A2A(入门篇)》和《第九章:n8n刚支持MCP就完了?OpenAI打响AI Agent标准之战:一场开发者生态的「觉醒时刻」》
💁 疯哥总结:
-
提升效率与生产力:随着AI技术发展,零代码自动化工具已成为职场人和企业的
必备投资。简单上手即可节省工时,减少低效会议。
-
显著节省成本:以20人规模、平均月薪1万元人民币的公司为例,每月可轻松节省
超数万元人力成本。
-
轻松实现规模化运营:自动化工具能无缝应对业务增长带来的工作量激增,支持
近7×24小时持续运行。
Zapier
✅ 背景:
美国公司,成立于2011年,是自动化领域的先驱和开创者。所以,它的用户也是最多的,目前大约有70万左右的用户数。
✅ 核心优势:
作为最老牌的零代码自动化平台,它成功的主要原因是长期以来专注解决用户实际痛点,利用了无代码或者低代码模式打破了现实中的各种应用孤岛,实现应用之间的连接。疯哥这话是不是废话,这三款工具不都是这样么,哈!是的。
那我来说点特别的,Zapier公司的运营方式有自己的特色,它们在公司内部倡导分布式协作,我们这叫远程办公,我觉得远程办公挺好,并不是所有人每天都坐在一间屋子里才能做好一件事情,你看Zapier有来自40国家的员工他们大多数都在不同的国家通过远程协作进行工作。其次,在疯哥来看有点牛的是Zapier开始并没有大笔花钱投广告砸流量,它们不断对产品进行打磨然,活生生靠Zapier这款工作流软件自然增长吸引到了前期的数万用户。最后,疯哥觉得Zapier是最早提出场景化工作流模版的,make和n8n这方面的也是跟Zapier学的。
✅ 优势总结起来有这样几点:
-
超低学习门槛:适合普通小白用户,追求极简操作又希望快速搭建常用应用。支持7,000+应用无缝对接,新手30分钟即可搭建基础流程。
-
成熟的生态:拥有百万活跃用户,覆盖全球40多个国家的远程协作团队。
-
完整的商业闭环:Zapier在没有搞联盟营销的情况下硬生生靠产品自身吸引到了300多万的用户数,在用户数上稳居行业龙头。
✅ 特点:
凡是使用过Zapier的用户第一个印象就是产品操作和交互非常易上手,其特点就是极简的交互设计,新手友好度非常高。过去常听说学习和使用自动化工具的朋友一开始大多选择Zapier,就是因为上手简单。但是,Zapier在应对复杂需求的工作流时对于用户来说简直就是灾难,由于节点或条件判断不断增多就必须将工作流拆分为多个独立的Zap进行管理,无疑增加了维护的难度。所以,当任务需求越来越复杂之后大多数用户都又放弃Zapier重新选择了n8n。
💁 疯哥分析
疯哥解析一下Zapier为何让用户觉得容易上手,因为Zapier采用线性流程设计(所见即所得的纵向工作流),即使零自动化经验、无技术背景的用户,也能在5分钟内搭建出一个自动化流程。如图:
💁 特点总结:
-
超多节点:集成了将近8000个应用软件节点,极大丰富了用户的选择。
-
鼠标拖拽:Zapier算是用web页面鼠标拖拽连线App节点模式搭建工作流最早创新者,确实做到了「点选即连接」的操作体验。
-
学习成本低:它集成了300多个场景模版,适合简单的业务场景的用户,只要鼠标点击即可一键复用。
✅ 收费方案
我们看一下Zapier的收费方案,然后疯哥给大家总结,提取关键信息。
付费方案关键信息提取
方案类型 | 免费版 | 入门版($19.9/月) | 企业版(定制报价) |
任务额度 | 100Task/月 | 1000Task/月 | 万级任务弹性扩容 |
关键限制 | 单步工作流 | 多步骤工作流 | 高级逻辑+专属支持 |
试用策略 | 永久可用 | 新用户享14天Pro版 | 定制POC验证 |
💡 成本警示
如果你是付费用户而且工作流每月执行次数超2000后,费用就会非常高,比竞争对手要高出35-50%(以20人团队为例,年支出约¥2.1万 vs Make¥1.4万 vs n8n免费 )
💡小知识
工作流执行次数:工作流工具收费时提到的执行次数不是工作流整个流程执行次数,而是从上个节点调用了下个节点就算一次。比方,你有一个工作流包含10个节点,完整跑一次就相当于执行了10次。你看懂了么,反正,我是无语啦。
💡小知识
Zap:在Zapier中用户创建的每一个工作流都称为"Zap",官方是这样定义的"Zap"是一种工作流,用于连接用户的应用可以自动执行重复性任务。它由一个触发器(用于启动 "Zap")以及一个或多个操作(即 Zap 触发后执行的事件)组成。
✅ 适合用户:
营销/HR/业务团队,普通用户、非技术开发者。想快速与国外常用软件系统对接的(如Slack、Google Sheets)适合处理简单重复任务的中小企业。
💁 疯哥点评
1、Zapier 新手友好度、易用性高。
2、Zapier的工作流只能竖从上往下搭建,无法横向扩展,从而被迫维护管理多个Zap,复杂度直线上升。
3、阶梯式收费规则,任务量越大成本越高,高的离谱。
4、无法应对逻辑层次多嵌套复杂的业务流程,只适合基础串联场景。
5、AI支持力度没有make和n8n强,到目前为止MCP节点还是测试版。
Make
✅ 背景:
欧洲斯洛伐克,成立于2016年,更名前叫“Integromat”,在2022年收购Hygger后更名为“Make”,后来被Celonis收购。Celonis是一家做流程挖掘和管理的公司,估值130亿美元。Make目前有约20万家客户,公司300多人也分布在170个国家。Make可以搭建比Zapier更加复杂的工作流任务。
✅ 核心优势:
Make称自己为可视化流程引擎,说明Make对自己的产品界面和交互品质是非常自信,行业内也称Make是工作流的视觉革命,疯哥有句说句,在Zapier、Make、n8n这三款自动化工具中Make的工作流执行视觉动画效果是最好的。
疯哥带大家近距离接触一下Make,疯哥在研究有个主要原因就是Make在线网站有时候访问比较慢,有可能是在欧洲的原因吧,更主要原因就是免费用户执行工作流次数太少了,稍微复杂一下点任务就超过次数限制,要等待第二天才能继续,很不爽。所以就全面拥抱可以免费无限制使用的n8n,事实也证明使用n8n是对的。
登录Make之后,这里就是Make主界面,点击“场景”进入自己搭建的工作流列表。
我的工作流列表
点击工作流,进入工作流设计界面
查询、添加节点
✅ 特点:
疯哥在使用Make一段时间之后对Make有了一定的了解,这里针对Make的特点做个总结。
-
生态开放+视觉效果
能力维度 | Make的解决方案 | Make的行业价值 |
流程设计 | 画布的动画效果非常好 | 支持无限分支/循环等复杂逻辑,能应对一些逻辑比较复杂的任务需求。 |
模板生态 | 模版一键复用&交易平台 | 创作者上传模板可盈利(类似App应用商店) |
协作效率 | 拖放区块+实时调试面板 | 错误定位效率提升3倍+ |
💁 疯哥点评:
Make支持搭建无数个流程分支和无限循环处理,对于应对复杂一些需求的任务来说会方便许多,确实要比Zapier强不少。但是,疯哥也说一下自己的实战经验,在某些自动化工作流中三款工具都无法很好的支持,就比如嵌套循环处理场景,就算在n8n中也无法很好实现,因为,外部循环节点通常无法动态感知内部循环状态,如果你懂写代码的话,就很容易解决不就是两个for循环嵌套么,但是,在零代码工具中这个能力对节点要求就太高了,希望三款工具都能加强这方面的能力。
针对这个问题疯哥也有自己的解决方案,也放到了《从零到n8n自动化专家》课程里了,有兴趣的小伙伴可以去n8nchina.net了解。
-
企业级数据处理
Make给用户针对数据处理的能力确实要比Zapier强些,能够应付一些复杂的场景。
容错功能 | 错误捕获→自动重试→异常通知闭环 | ||
数据转换 | 支持常用数据格式转换(Json/XML) | ||
条件判断 | 支持多层条件判断(If/else) | ||
条件循环 | 支持带条件判断循环(for/while) | ||
函数扩展 | JavaScript自定义脚本 | 内置200+公式(文本清洗/日期计算等) |
-
应用生态
深度整合2,500+主流应用(尤其擅长API复杂调用场景),疯哥要夸一下Make的产品团队为了吸引中国用户,居然集成了微信API,到目前为止只有Make集成了微信公众号官方开放接口,需要用户自己先在微信公号中申请Webhook(监听触发器)。
点击"微信公号"节点我们可以看到下面的调用接口列表
✅ 收费方案
我们看一下Maek的收费方案,然后疯哥给大家总结,提取关键信息。
💁 疯哥点评
疯哥只关心免费用户能获取到多少使用权限和使用量,Make疯哥使用过一段时间之后就放弃了,确实每天1000次的执行次数,太TM少了,而且只能同时执行两个自动化任务,对我们企业来说是完全不可能的,对于稍微依赖自动化工作流帮我处理日常业务场景来说也不够用。说白了就是让你花钱买他们的工作流执行次数和可同时运行任务的数量。无法忍受的还有就算任务节点执行失败了也要算一次。
✅ 适合用户:
运营/IT人员,适合逻辑能力较强的有一定电脑操作经验的用户。对用户使用来说需要掌握操作移动性和复杂工作流之间的平衡。适合中小型企业搭建多分支、数据转换等中等复杂度工作流,性价比需求高的用户。
n8n
开源版的扣子?
打开我们对AI + 自动化无限的可能性
✅ n8n背景:
由德国人杨-奥博豪泽 (Jan Oberhauser) 在2019年在德国成立,n8n是三家公司中最晚成立的一个,但是也是最特别的一家自动化软件公司。在中国被许多人称为开源版的“扣子”,哈,这样的比喻肯定是不正确的,至少缺乏对n8n的深度了解。
n8n创始人 Jan Oberhauser
三家公司里面目前只有n8n是开源的,几乎每周都会发布一个新版本。真佩服n8n有这样高的更新频次,说明项目团队从社区用户那里获取了非常多的问题和建议,从而坚持对产品进行高频迭代。从侧面也证明开源社区对n8n的支持是非常的火爆,值得注意的是自从AI崛起,n8n发布OpenAI节点开始n8n就像开挂一样一路狂飙,特别是2025年到现在短短几个月github星星数就从7万涨到10万。
就在3天前,n8n星星数超过了来自中国的Dify。
n8n全球活跃的用户有20万,其中企业客户3000多家,疯哥有点好奇为什么有三分之二的用户都来自美国,感觉n8n在亚洲也应该好好宣传一把。
就在2025年初n8n获得6000万美元B轮融资,此轮融资由 Highland Europe 领投,HV Capital 以及之前的投资者 Sequoia、Felicis 和 Harpoon 也参与其中,这让n8n在AI赛道上准备来一场彻底的加速。
2025年5月在德国召开的 “n8n 构建标准AI应用” 社区交流大会
n8n是三款工具中最受自动化工作流开发者欢迎的工具,最主要的原因是n8n是基于"公平代码(fair code)"这个概念打造和建立的这也是n8n的创始人CEO杨-奥博豪泽提出的这个概念,为此他也运营着一家专门介绍公平代码的网站。
⏰ 小知识
公平代码(fair code):它是软件代码开源的一种形式,软件技术人员可以免费使用它的开源代码,但是也有一定的限制,就是一旦想要将基于开源代码进行商业化时就需要补偿开源作者或者社区。无需编程基础,通过可视化界面拖拽操作,让普通人也能一键搭建自动化流程的神器。
尽管n8n是基于“公平代码”打造的,并且主要依靠开源社区的口碑传播得到非常快速的发展,但是,从2025年开始公司提出全面拥抱AI才是未来n8n发展方向。奥博豪泽表示,早在1年多前他们就预见到AI发展带来的趋势,所以n8n是很早将AI集成到产品中的厂商,通过将代码转换为自然语言,减少开发人员实施自动化的工作量。
当前AI大模型尤其是生成式AI,妥妥的是这些老牌自动化厂商在技术产品上完美的补充,这一点以及获得业内人士普遍的认同。
如果说自动化和零代码或低代码方式减少了整个不同应用程序和服务时的环节和繁琐工作的话,那加入AI进一步降低了我们在使用自动化工具时的技术门槛。
所以,n8n有着高度的自由度和可定制化,因为开源所以除非你是官方付费用户,否则,不愿意付费的白嫖用户可以随时使用到老死。哈,一点不夸张,虽然Zapier、Make也很好用但是说到无限制免费使用,还可以自己从软件底层进行定制化的产品,就只有n8n。当然有朋友会说Dify也是开源的,但是,Dify的定位和n8n还是有差别,另外,在自由度上Dify还是差n8n一头。
💡关联文章
对n8n vs Dify有兴趣的朋友,请阅读疯哥这篇文章《一文读懂n8n:零基础玩转AI智能体,我该怎么选!与Coze(扣子)、Dify区别在哪?》。
【AI自动化系列教程都在疯哥微信公号 - "疯哥AI"】
不同于Zapier、Make只提供云端在线模式,n8n出其不意除了提供在线付费模式之外,还提提供开源社区版,我们可以免费无限制使用,自己可以安装部署在个人电脑上也可以部署到企业服务器上,没有执行次数限制、也没有同时运行数量的限制。会有一些功能与付费版有差别,但是,最主要的所有节点都是一样使用没有差别和限制,所以使用免费版同样可以搭建出非常复杂的企业级任务流程。
n8n开启"自动化无限的可能性",疯哥再给大家看一个非常牛的应用 - n8n自动化搭建前端,是不是要替代掉前端工程师么?
2025年4月 社区技术交流
另外,特别注重数据安全的团队或企业一定不能错过n8n。n8n默认安装自带轻量级的本地数据库(SQLite),随着安装n8n一同被安装在用户自己的电脑上。n8n还支持连接用户自己的Postgersql数据库,这样充分保证了数据的隐私安全和高性能。
✅ n8n特色:
因为疯哥一直在研究使用n8n,所以积累不少心得,下面从这几个方面来总结n8n到底有哪些值得介绍的特色。
产品架构的设计
-
鼠标点击拖拽可视化画布:通过节点(Node)与节点之间的连接来搭建工作流,每个节点代表一个应用操作(如 谷歌网盘、Deepseek、API 调用、数据处理等等)。使用鼠标和键盘方便复制粘贴工作流。
-
支持代码嵌入:在工作流中支持用户编写js和python代码处理一些复杂的业务(如 过滤网页标签提取内容)。
-
支持表达式:实现动态数据变量的引用(如 {{$json["field"]}} )
-
事件驱动和弹性:n8n工作流基本都是可以由触发器(如 外部web触发、定时任务触发、手动触发等),数据在节点间流动,支持并行/串行处理。其中,并行数据处理对性能有一定需求的用户来说非常重要,实现起来需要注意一些点和技巧,n8n相比Zapier、Make强大之处就是具备高并发高吞吐的特点。
对并发处理技巧疯哥放到了《从零到n8n自动化专家》里了。
-
自由部署:支持 docker/kubernetes 一键自托管,保障数据隐私(适合金融、医疗等敏感场景)
-
安全可控:连接私有数据库(PostgreSQL),支持企业级的安全特性(如 SSO 单点登录、RBAC 权限控制、审计日志和端到端加密)。
集成AI大模型
n8n集成了比"AI 代理节点(AI Agent)"还早的LangChain节点,当时就成为n8n在AI赛道上最突出的竞争力。
-
大语言模型调用:原生集成 OpenAI、DeepSeek、Anthropic 等上百种AI工具节点,无需 HTTP 封装。如AI自动阅读邮件、分析分类邮件甚至帮我们写回复邮件,生成报告内容等等场景。
-
多步骤AI代理(AI Agent):基于 LangChain 构建链式工作流(如:输入→LLM 分析→数据库查询→输出)。如自己开发或与现有客服系统对接,开发出基于AI的智能客服、查询知识库生成回复等场景。
-
AI 语音/图片处理:n8n集成了 ElevenLabs(文本转语音)节点,Flux模型(图片生成)API调用等。比如使用在视频配音,媒体内容生成相关业务中。
-
数据处理交互:使用提示词查询数据(如 刚才是谁联系了小明),输出结构化的结果,能直接搭建或者与现有客户关系管理或ERP等系统对接。
效率和生态
-
开箱即用的模版市场:n8n的用户可以轻松将它们的工作流模版分享到n8n上,其他用户可以通过下载Json文件,在线导入、复制等操作快速获取。
-
自定义节点:用户可以通过官方规定的方式开发自定义节点,n8n中没有提供类似节点,n8n允许用户可以动手开发节点,如飞书节点、百度网盘节点等等,给用户极高的自由度。
-
多用户协作:支持企业团队协作开发,社区版不支持这一功能。
高性能可扩展
模块化部署:n8n 支持 Docker 和 Kubernetes 集群部署,可根据负载动态调整资源,随意增加减少跑工作流任务的节点,从而实现水平扩展。
分布式任务队列:通过调用数据缓存(Redis)或消息队列(RabbitMQ) ,分散高并发请求,避免单点阻塞,提升吞吐能力。
资源按需配置:VPS 或云服务器方案(如 n8n直通车)提供从 4GB 到 32GB 内存、多核 CPU 的灵活选项,满足不同规模业务需求。
负载均衡支持:在集群模式下,可通过 Nginx 或云负载均衡器分发请求,优化并发处理能力
小总结
在三款自动化工具中为啥唯独n8n适合企业级的高并发场景?疯哥认为n8n独有的分布式架构再加上本地化扩展能力使得n8n能承载大规模自动化的负载能力,再者就是它模块化的设计与用户在使用时的成本优化策略确保了我们在执行任务时能稳定高效。这里,疯哥给出两个实践经验:
-
有低延时需求时我们可以选择NVMe 硬盘 + 多核 CPU 的 服务器或电脑。
-
有数据密处理需求时可以使用外接Pg数据库,不要使用默认数据库。
-
如果有多个相同工作流任务跑可以考虑将每个工作流分别作为一个单独的任务执行,将中间结果保存到数据库或者用触发中间工作流来接受保存。
⏰ 小知识
n8n直通车:n8n中国推出一个轻量级的n8n在线部署方案,针对缺少技术运维团队的个人、企业用户通过选择n8n服务器(北美、国内)快速搭建和部署自己的AI工作流,具备大数据高并发的特点。
n8n人工智能节点参考
n8n产品的构建考虑了和多种AI大模型融合,n8n的理念是,如果终端用户已经在使用某种大语言模型来构建服务,那么可以将其集成到 n8n 平台中使用。和许多其他面向开发者的平台一样,n8n 拥有一个相当庞大的贡献者社区。这些贡献者在 GitHub 等平台上非常活跃,他们参与各种论坛,帮助其他开发者解决问题,还会构建和使用其他开发者创建的工作流程模板(n8n 也预先构建了许多工作流程模板)。
据统计n8n目前约80%的用户都在积极体验和使用AI功能,包括全球主流AI大模型之外n8n还整合了MCP套件节点。疯哥带大伙了解一下 n8n 关于所有 AI 的节点
AI节点入口列表
人工智能代理 (AI Aegnt) 节点是一个自助系统,它相当于给工作流按上了一个“智能大脑”,n8n上所有AI大模型LLM节点都需要从“人工智能代理”节点上再次添加。
它核心作用就是调用各种AI节点,在工作流中生成和理解提示词再配合一些辅助工具完成一些复杂的工作流任务。
一句话总结:人工智能代理 (AI Aegnt) 节点让 n8n 工作流拥有了理解和处理自然语言的“思考”能力,大大提升了自动化的智能化水平。
人工智能代理 (AI Aegnt) 节点下面的 聊天模型(AI大模型) 节点列表,如图:
人工智能代理 (AI Aegnt) 节点下面的 AI记忆工具(Memory) 节点列表。
如果搭建需要和AI大模型对话类型的工作流的话,那么就要用到记忆存储通,将与AI对话内容存储在缓存数据库和系统数据库中,从列表中的节点就能明白。
人工智能代理 (AI Aegnt) 节点下面的工具节点列表,如图:
除了已经打包成节点的AI模型之外,如果需要调用云上各种AI模型通常用 http请求(HTTP Request) 节点就可以轻松调用大模型API。包含有请求API、访问网页、抓取网页内容等需求的任务都得用到 http请求( HTTP Request) 节点。
http请求( HTTP Request) 节点的配置非常简单:
1、设置请求方法(GET、POST)
2、要调用的网址
3、选择身份验证方式
4、如果是GET请求,需要手动添加参数名和参数值
5、可添加请求头参数和值
6、如果是POST请求,需设手动设置请求参数类型和内容
还包括 MCP客户端、MCP服务器 节点,方便搭建基于MCP的应用。
通过n8n提供的MCP客户端和服务端节点,可以快速搭建基于MCP的工作流,给搭建看一个简单的MCP例子,使用n8n搭建MCP服务端工作流和客户端工作流,使用MCP服务端触发器连接多个提供对我API接口的应用,在创建MCP客户端工作流通过AI对话聊天的方式调用提供服务端,如下截图:
💁 获取AI工作流源码
名称:《全球天气MCP调用》
介绍:疯哥搭建的一个查询全球天气情况的MCP工作流,包括 MCP服务端和MCP客户端。
网址:https://n8nchina.net/robot.html
再配合这篇教程学习上手更快《第十章:n8n MCP动手搭建、实战案例拆解,n8n+MCP+A2A(入门篇)》
n8n可以说将搭建AI应用能遇到的所有功能节点都为用户考虑到了,比如搭建AI客服聊天应用,需要用到的聊天上下文存储工具,我们再看一下 其他AI 节点,截图:
到这里,我相信看疯哥文章的新手朋友肯定对n8n都是一知半解甚至糊里糊涂,没关系,疯哥特别推荐一个学习n8n的资源网站 - “n8n中国”,全都是n8n的学习资源和相关工具与服务,对中国用户来说是入门学习AI自动化首选门户网站。
⏰ 小知识
n8n中国:它是国人创建的首个n8n中文学习交流平台,包括官方帮助的中文版,提问与解决问题的社区,刚刚还推出了免安装的中文版n8n,对想接触AI自动化的同学帮助会非常大。
优势总结
尽管n8n有不错的优势,但是说到根上,不是融入了AI也不是因为代码开源,而是n8n自身产品灵活自由的设计理念、处理能力和实际应用规模这些才是吸引用户和投资人的关键。
✅ 收费方案
n8n官方只有两种付费方案:
1、普通会员:
每月2欧元(200元人民币),包括每月2500次完整执行、同时跑5个自动化任务。
2、专业会员:
每月50欧元(500元人民币),包括每月1万次完整执行、同时跑15个自动化任务。
💡注意
完整执行:n8n计费时所谓的完整执行就是指完整跑完一次工作流。
3、托管服务:如果你在乎隐私或是企业拥有大量自动化需求,你可以选择付费使用官方的托管服务,疯哥推荐自己部署n8n,这样能无限制使用n8n所有功能,没有并发限制也没有激活数量限制。(除了开源社区版有限制项目创建、项目共享等协作功能)
✅ n8n 版本差异对比
依据n8n官方公布的版本信息进行对比
功能 | 社区版(免费) | 付费版(云/企业) |
---|---|---|
部署方式 | ✅ 完全免费自托管 | 云版:云端托管,无需运维 |
核心功能 | ✅ 完整工作流引擎 | ✅ 包含社区版全部功能 |
用户与协作 | ❌ 支持单用户基础权限 | ✅ 多租户与团队协作: |
安全与合规 | ❌ 支持基础安全 需要自配置 HTTPS/防火墙 | ✅ 企业级安全包: |
执行与监控 | ❌ 支持基础日志 (无聚合分析) | ✅ 高级运维监控: |
支持服务 | ❌ 只依赖社区 (GitHub/论坛) | ✅ 官方 SLA 支持: |
定价 | ✅ 永久免费 | 云版:20、50欧元/月起 |
✅ n8n适合用户
市场、营销、运营、DevOps/数据工程师、IT团队,对数据所有权和安全性要求较高的用户一定不能错过n8n,高度企业定制化。这三款工具中只有n8n是开源的允许用户自由部署和安装,所以,n8n可以部署在任何服务器和个人电脑上(win、mac),其实n8n最适合与企业现有系统做紧密结合,构建非常复杂的业务流程。加上在n8n中可以方便调用AI大模型与MCP节点可以快速搭建出机遇AI驱动自动化系统。
💁 工具推荐
n8n中国(百度搜索关键词:n8n中国)有一款中文桌面版n8n, 非常适合咱们中国用户习惯,不但是中文界面而且还不用折腾Docker也不要配置服务器环境,下载软件包解压后双击可执行程序就可以使用了,非常简单方便.
Zapier、Make 、n8n 计费逻辑对比
疯哥分别介绍了三款工具的收费逻辑,现在针对云端收费做个对比,防止新手踩坑。
平台 | 计费单位 | 计数规则 | 用户成本影响 |
Make | Ops | 节点执行就计费 | 条件判断失败仍消耗额度 |
Zapier | Tasks | 仅成功执行计数 | 中断流程接近零成本 |
n8n | Execution | 完整执行算1次 | 失败任务完全免费 |
是不是有点模糊,看不懂就会产生隐藏成本,现在疯哥为大家拆解一下:
Zapier扣费逻辑:
免费14天,限制创建2个Zap,100次Task/月,两次执行之间最少间隔2分钟。
付费20美元/月,创建无限Zap,1000次Task/月,两次执行之间最少间隔2分钟。
工作流只有在执行成功后才算一次。
Make扣费逻辑:
免费,1000步/月,两次执行之间最少间隔15分钟。
付费9美元/月,无限步/月
走if条件节经过判断后没有继续往下走或者走了另外分支流程,那么算2个Ops(A+B节点触发),反正只要有节点被触发就算一次。
n8n扣费逻辑:
免费,开源社区版,无限制。
付费20欧元/月,2500次/月
付费50欧元/月,10000次/月
n8n扣费逻辑最简单,工作流全程执行成功后才算一次。
Zapier、Make 、n8n 深度对比报告
Zapier vs Make vs n8n 深度对比表
对比维度 | Zapier | Make | n8n |
---|---|---|---|
界面体验 | 直观拖拽式界面,新手友好 | 白板式图形界面,支持复杂流程设计 | 白板式图形界面,支持复杂流程设计 |
语言支持 | 英文(部分功能支持多语言) | 全英文 | 全英文 |
应用集成数量 | 截止现在支持7000+节点,持续增加中 | 约1,500个应用,持续增加中 | 截止现在支持1039个官方节点,持续增加中 + 无限自定义API接入 |
技术门槛 | 无需编程,适合非技术人员 | 需基础技术知识+配置复杂流程 | 需技术知识,支持自定义代码/脚本+自有部署 |
自定义能力 | 基础自动化,扩展性有限 | 中等灵活性,支持部分逻辑定制 | 超高自由度,超复杂工作流,可嵌入代码/自建节点 |
部署模式 | 仅云服务 | 仅云服务 | 开源免费+云服务 支持私有化部署 |
免费版限制 | - 100 Tasks/月免费14天 - 2个Zap/月免费14天 - 1000Tasks/月$19 - 触发间隔2分钟 | - 1,0000步/月($9) | - 无限本地部署 2500次/月(20欧元) 10000次/月(50欧元) |
核心计费模式 | 按Task计费 : | 按Ops计费 : | 自部署免费 |
高阶功能成本 | Table/Chatbots/Interfaces等需额外订阅 | 无强制附加模块 | 所有功能开源免费 |
核心优势 | 简单任务快速实现 | 平衡复杂度与学习成本 | 无限定制能力 (任何开放API服务皆可接入) |
适用场景 | 营销/通知等轻量自动化 | 中等复杂度数据整合 | 企业级复杂系统集成 (ERP/自研系统对接) |
挑选规则与经验分享
疯哥对自动化工具挑选的原则和经验
如果你是新手刚刚开始接触自动化工具,想快速感受或者马上搞定一个自动化任务的工作流的我建议从Zapier这款工具入手,作为行业老将,它把 7000 多个应用打包成「即插即用」节点,像搭积木一样简单——今天设置明天就能用,真正零门槛体验自动化的魅力。
根据自身情况和需求,以下规则仅供参考:
- 选Zapier:喜欢极简操作,业务场景需求简单,无技术背景。
- 选Make:业务分支多、逻辑较复杂,工作流中等复杂。
- 选n8n:需要和AI深度集成,有自定义代码或数据隐私安全要求,企业私有化部署。
我分享一个经验,大家看了就明白Zapier和n8n的差距在哪里,有时候当你需要自定义并想精准控制工作流的执行频率时,因为,Zapier只能在线使用官方提供的托管服务,这也使得使用托管模式的Zapier会暴露一个缺点,就是Zapier只会协调线上所有用户的任务,不会为单独某个任务协调资源或提供性能保证,有点像一辆公共车,司机必须协调所有乘客的路线,无法为单独某位乘客提供优化路线,你能明白么?。
举个真实例子:
我有一个从多个RSS源获取数据的工作流,要求每分钟轮询10个RSS源节点并用AI模型实时分析获取到的内容,在n8n中只需1个定时触发节点加多条支流程就可以搞定而且是免费的,如果用 Zapier 的话抱歉!请先购买 69美元/月的天价套餐!
- 👉 如果遇到以下这些场景,请果断将你的自动化任务切换到n8n!
- ⚠️ 执行任务量突然暴增 (每天每月数倍增加)。
- ⚠️ 需要对接外部系统或者企业内部系统 (企业内部数据库、内部CRM系统等)。
- ⚠️ 业务逻辑变得复杂 (逻辑判断层级或者流程分支开始变得又多又复杂)。
疯哥只有一句话最后再提炼一下:日常轻量级需求使用Zapier,重量级自动化任务使用n8n,不要犹豫!至于说为什么不选Make?其实,“既生瑜何生亮”既然都有了Zapier和n8n,Make就显得两头不讨好,易操作比不过Zapier,免费自由又比不过n8n,Make能做的n8n都能做。
👉 普通人如何快速上手 n8n?
痛点:
n8n官方有使用教程,但是疯哥认为官方教程虽然丰富但是都不深入,大部分细节都不够详细。
正解:
入门从疯哥本专栏教程开始,《掌握 n8n,开启 AI 自动化之旅》系列文章带你入门基于n8n的AI自动化工程 ,专栏《掌握 n8n,开启 AI 自动化之旅》持续输出:
✅ 节点配置避坑手册(覆盖90%报错场景)
✅ 企业级AI自动化架构解析(附可拓展设计模板)
✅ 渐进式学习路径:
阶段1:基础连接器与逻辑链构建
阶段2:商业场景下的异常处理与优化
。。。
真正的从零基础开始体系化学习n8n,《从零到 n8n 自动化专家》、《n8n 商业案例精讲》两套课非常适合零基础的小白30天提升到专业AI自动化产品经理或架构师,n8n 常见的踩坑和容易出错的节点配置都有针对性详细讲解,突出对搭建业务场景AI工作流的掌握。特别是每期都会拆解一个商业的实战AI自动化案例,很多案例的AI工作流已经在疯哥的群里跑起来服务群里的小伙伴。
推荐上“n8n 中国 ”,另外,还有 n8n 中文论坛、n8n 直通车和 n8n 工作流商店(可以发布自己的作品还能作为副业赚钱)。
“部分n8n初学者反馈n8n上手慢有点难,经溯源99%因未将学习站点切换至n8n中国站,请优先访问 n8n中国
完成 中文学习使用n8n的第一站”
👉 希望得到你的鼓励和支持
撰写文章费脑细胞,也没有经济利益,如果你能从我的文章中学到一点技能,疯哥 诚意邀请你给这篇文章点个赞,分享给身边同样对AI自动化有兴趣的朋友。
凡是点赞、分享的朋友 ➕ Worshipsme 免费获取n8n商业工作流案例。