RocketMQ发送多个消息及mysql操作的事务一致性保证

一段逻辑中有这样的技术需求:

1、需要发送多个不同topic的消息(一般可以避免);

2、需要进行本地数据库事务操作;

3、需要保证多条消息的发送跟数据库事务的事务一致性;

这里使用RocketMQ4.3及以后版本的事务消息进行尝试实现。

这段代码实现了 RocketMQ 的事务消息监听器 MyTransactionListener,它实现了 RocketMQ 的 TransactionListener 接口,其中包含了两个方法:

  1. executeLocalTransaction(Message msg, Object arg) 方法用于执行本地事务。当发送事务消息时,RocketMQ 会调用此方法来执行本地事务。在方法中,首先从参数 arg 中获取事务消息相关的数据,然后从队列中取出下一条待发送的消息 nextMsg,如果存在下一条消息,则使用事务生产者发送该消息,并返回发送结果对应的本地事务状态;如果队列中已经没有下一条消息,则说明当前消息是最后一条消息,模拟数据库连接并保存订单信息,最后返回提交消息的状态。如果在任何步骤中发生异常,则返回回滚消息的状态。

  2. checkLocalTransaction(MessageExt msg) 方法用于检查本地事务的执行状态。RocketMQ 在发送事务消息后会定期调用此方法来检查本地事务的执行状态。在方法中,首先解析消息体获取用户信息,然后模拟数据库连接并查询用户信息的状态,如果用户信息状态为正常,则返回提交消息的状态,否则返回回滚消息的状态。如果在查询过程中发生异常,则记录错误日志,并返回状态为未知的状态。

需要注意的是,在 checkLocalTransaction 方法中,如果发生异常,则返回 LocalTransactionState.UNKNOW 表示本地事务状态未知,这可能会导致 RocketMQ 在无法确定本地事务状态时采取一定的策略(如重试)来保证消息最终一致性。因此,在实际生产环境中,应尽量确保本地事务的状态能够被正确地查询和确认,以确保消息的可靠传递和数据的一致性。

如下代码,只是自己按对RocketMQ事务消息的理解设计的简单的demo,并未在生产上进行实践,如有疑问欢迎交流指正。

public class NestedTransactionDemo {

    // 模拟数据库连接
    private static Connection getConnection() throws SQLException {
        // 这里使用简单的内存数据库 H2
        return DriverManager.getConnection("jdbc:h2:mem:test");
    }

    // 业务db操作
    priv
<think>嗯,用户这次想了解分布式事务一致性解决方案和原理,还特别提到要实现方法及最佳实践。看来用户是个有一定技术背景的工程师,可能在设计分布式系统时遇到了事务一致性的实际问题。用户给出的引用材料质量参差不齐,需要筛选有效信息。引用[2]和[3]比较有价值,提到了2PC、3PC强一致性方案和基于消息队列的最终一致性方案;引用[4]明显是广告可以忽略;引用[1]虽然提到RabbitMQ但不够具体。用户上次的问题是关于分布式事务一致性解决方案的,这次应该是在寻求更深入的技术细节。ta可能正在做技术选型,需要比较不同方案的优劣。从ta要求“实现方法及最佳实践”来看,更关注落地层面而非纯理论。注意到用户对广告内容很敏感(引用[4]),回答时应当保持专业性和中立性,避免任何营销倾向。用户似乎更信任具体的技术方案描述而非概念性内容,所以重点解析两种主流实现方式的技术细节比较合适。在技术深度上需要平衡:既不能太基础(用户显然知道CAP定理这些),也不能太晦涩(具体数学公式和算法细节可以放到延伸问题里)。最佳实践部分要突出可操作性,比如“幂等消费设计注意事项”这类具体建议。用户没有限定具体场景,但提到“订单和库存系统”(引用[1]),所以案例可以侧重电商交易场景。RabbitMQRocketMQ的实现差异也要说清楚,因为引用[3]专门提到RocketMQ事务消息特性。最后考虑设计延伸问题时,要覆盖用户可能遇到的后续问题:如何选择协议、常见误区、行业案例等。特别是性能优化这点,高并发场景下的事务处理是很多工程师的痛点。</think> 以下是分布式事务一致性实现方法及最佳实践的全面解析,结合理论基础与工程实践: --- ### **一、一致性实现的核心方法** #### 1. **强一致性方案** - **两阶段提交协议(2PC)** - **流程**: ```mermaid graph LR A[协调者] -->|Prepare请求| B[参与者1] A -->|Prepare请求| C[参与者2] B -->|投票结果| A C -->|投票结果| A A -->|全局提交/回滚| B A -->|全局提交/回滚| C ``` - **问题**:同步阻塞(参与者阻塞等待)、协调者单点故障。 - **适用场景**:数据库跨库事务(如MySQL XA)。 - **三阶段提交协议(3PC)** - **改进点**:增加预提交阶段(CanCommit)和超时机制,降低阻塞概率[^2]。 - **缺点**:网络分区时仍可能数据不一致。 #### 2. **最终一致性方案** - **基于消息队列的实现** ```mermaid sequenceDiagram 参与者A->>MQ发送事务消息(Prepared状态) MQ-->>参与者A: 消息存储成功,但未投递 参与者A->>本地DB: 执行业务并提交 参与者A->>MQ: 确认消息(Commit/Rollback) MQ->>参与者B: 投递消息 参与者B->>本地DB: 消费消息并提交操作 ``` - **核心保障**: - **事务消息**:RocketMQ支持(半消息机制)[^3] - **幂等消费**:通过唯一ID(如业务主键)避免重复处理 - **对账补偿**:定时核对数据差异,触发补偿任务 - **适用场景**:订单-库存系统、支付-通知链路[^1]。 --- ### **二、最佳实践与关键设计** 1. **选择依据** | 场景需求 | 推荐方案 | 理由 | |------------------|-------------------|--------------------------| | 金融交易 | 2PC/TCC | 强一致性优先 | | 高并发容忍延迟 | 消息队列最终一致 | 系统解耦,吞吐量高 | 2. **关键设计原则** - **服务解耦**:业务操作消息发送分离(e.g., 先本地事务,再发消息) - **幂等设计**:消费端通过`(消息ID + 业务键)`保证唯一性 - **事务表兜底**:本地事务表中记录消息状态,定时扫描补偿[^3] - **限流降级**:MQ消费者线程池隔离,避免雪崩 3. **典型架构示例(订单系统)** ```plaintext [订单服务] --事务消息--> [MQ] --异步投递--> [库存服务] ↓ | [本地事务表] [定时对账服务](核查库存扣减状态) ``` --- ### **三、常见问题解决方案** - **消息丢失**: - 生产者:本地事务表 + 定时重发 - MQRocketMQ事务消息机制(自动回查) - **消费失败**: - 死信队列 + 人工介入 - 指数退避重试策略(如1s/5s/30s) - **数据不一致**: - 对账系统定时比对核心表(如订单状态 vs 库存流水) --- ### **
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进窄门见微光行远路

如果对你有比较大的帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值