(1)[HppHplHlpHll][ΔXpΔXl]=[bpbl][I−HplHll−10I][HppHplHlpHll][ΔXpΔXl]=[I−HplHll−10I][bpbl][Hpp−HplHll−1Hlp0HlpHll][ΔXpΔXl]=[bp−HplHll−1blbl]\begin{aligned} \begin{bmatrix} H_{pp} & H_{pl} \\ H_{lp} & H_{ll} \end{bmatrix} \begin{bmatrix} \Delta \Chi_{p} \\ \Delta \Chi_{l} \end{bmatrix} &= \begin{bmatrix} b_{p} \\ b_{l} \end{bmatrix} \\ \begin{bmatrix} I & -H_{pl}H^{-1}_{ll} \\ 0 & I \end{bmatrix} \begin{bmatrix} H_{pp} & H_{pl} \\ H_{lp} & H_{ll} \end{bmatrix} \begin{bmatrix} \Delta \Chi_{p} \\ \Delta \Chi_{l} \end{bmatrix} &= \begin{bmatrix} I & -H_{pl}H^{-1}_{ll} \\ 0 & I \end{bmatrix} \begin{bmatrix} b_{p} \\ b_{l} \end{bmatrix} \\ \begin{bmatrix} H_{pp}-H_{pl}H^{-1}_{ll}H_{lp} & 0 \\ H_{lp} & H_{ll} \end{bmatrix} \begin{bmatrix} \Delta \Chi_{p} \\ \Delta \Chi_{l} \end{bmatrix} &= \begin{bmatrix} b_{p}-H_{pl}H^{-1}_{ll}b_l \\ b_{l} \end{bmatrix} \\ \end{aligned} \tag{1}[HppHlpHplHll][ΔXpΔXl][I0−HplHll−1I][HppHlpHplHll][ΔXpΔXl][Hpp−HplHll−1HlpHlp0Hll][ΔXpΔXl]=[bpbl]=[I0−HplHll−1I][bpbl]=[bp−HplHll−1blbl](1)
以上均是一般行变换(以左乘矩阵的形式表示),故方程组的解不会发生变化。
【注】:右侧变量b的定义是将负号包含在内的!!
将公式(1)中最后一个等式,重新写成下面两个等式:
(2)[Hpp−HplHll−1Hlp]ΔXp=bp−HplHll−1blHlpΔXp+HllΔXl=bl\begin{aligned}
[H_{pp}-H_{pl}H^{-1}_{ll}H_{lp} ] \Delta \Chi_{p}&= b_{p}-H_{pl}H^{-1}_{ll}b_l \\
H_{lp}\Delta \Chi_p+H_{ll}\Delta \Chi_l &= b_l
\end{aligned} \tag{2}[Hpp−HplHll−1Hlp]ΔXpHlpΔXp+HllΔXl=bp−HplHll−1bl=bl(2)
故:
(3)ΔXp=[Hpp−HplHll−1Hlp]−1[bp−HplHll−1bl]ΔXl=Hll−1[bl−HlpΔXp]\begin{aligned}
\Delta \Chi_{p}&= [H_{pp}-H_{pl}H^{-1}_{ll}H_{lp} ]^{-1} [ b_{p}-H_{pl}H^{-1}_{ll}b_l ] \\
\Delta \Chi_l &= H^{-1}_{ll} [ b_l-H_{lp}\Delta \Chi_p]
\end{aligned} \tag{3}ΔXpΔXl=[Hpp−HplHll−1Hlp]−1[bp−HplHll−1bl]=Hll−1[bl−HlpΔXp](3)
可以加速的原因