pytorch应用(入门2) 一维线性回归

nn.Module(模组)

在这里插入图片描述
nn.Linear是线性层
在这里插入图片描述

torch.optim (优化)

这是一个实现各种优化算法的包。

在调用的时候将需要优化的参数传人,这些参数都必须是Variable, 然后传入一些基本的设定,比如学习率动量等。

举个例子:

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

在这里插入图片描述

看到这里,如果代码不太懂的可能有点懵,不过深度学习的代码就是这样,分几个层次来构建一个完整的模型。

模型的保存和加载

两种方式,各有各的不同之处。
在这里插入图片描述

一维线性回归

深度学习的一层神经网络呗(粗略地这样认为是可以的)
至于总的线性模型的式子其实其他教程上都有:
在这里插入图片描述
在代码实现的过程中我又又报错了,然后我心平气和地去找改错的博文,thistorch踩坑

改完错误的我,真的是高兴呢!,书中作者的代码不知道是哪年的,自己敲的时候没报错,我敲的时候就报错了,根据报错信息来看,应该是版本不一样导致的语法修改。

%notebook的魔法命令

代码如下:

import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import torch.nn as nn
x_train = np.array([[3.3],[4.4], [5.5], [6.71], [6.93], [4.168],
[9.779],[6.182], [7.59], [2.167], [7.042] ,
[10.791],[5.313], [7.997], [3.1]], dtype=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒回顾,半缘君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值