目录
nn.Module(模组)
nn.Linear
是线性层
torch.optim (优化)
这是一个实现各种优化算法的包。
在调用的时候将需要优化的参数传人,这些参数都必须是Variable
, 然后传入一些基本的设定,比如学习率和动量等。
举个例子:
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
看到这里,如果代码不太懂的可能有点懵,不过深度学习的代码就是这样,分几个层次来构建一个完整的模型。
模型的保存和加载
两种方式,各有各的不同之处。
一维线性回归
深度学习的一层神经网络呗(粗略地这样认为是可以的)
至于总的线性模型的式子其实其他教程上都有:
在代码实现的过程中我又又报错了,然后我心平气和地去找改错的博文,thistorch踩坑
改完错误的我,真的是高兴呢!,书中作者的代码不知道是哪年的,自己敲的时候没报错,我敲的时候就报错了,根据报错信息来看,应该是版本不一样导致的语法修改。
代码如下:
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import torch.nn as nn
x_train = np.array([[3.3],[4.4], [5.5], [6.71], [6.93], [4.168],
[9.779],[6.182], [7.59], [2.167], [7.042] ,
[10.791],[5.313], [7.997], [3.1]], dtype=