RT-DETR优化:UNetv2多层次特征融合模块结合DualConv、GSConv

本文介绍了将U-Netv2多层次特征融合模块与DualConv、GSConv相结合,应用于RT-DETR的优化方法,实现在多个数据集上的性能提升,特别是对小目标检测的效果显著。详细阐述了U-Netv2的原理,以及如何将改进模块整合到RT-DETR中,包括新建文件、注册、使用方法和配置文件更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀🚀🚀本文改进:多层次特征融合(SDI)结合DualConv、GSConv模块等实现二次创新

🚀🚀🚀SDI 亲测在多个数据集能够实现涨点,同样适用于小目标检测

 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

RT-DETR模型创新优化,涨点技巧分享,科研小助手;

1.U-Netv2原理

论文: 2311.17791.pdf (arxiv.org)

摘要: 在本文中,我们介绍了U-Net v2,一种新的鲁棒和高效的U-Net

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值